Skip to main content

Mammary Development, Carcinomas and Progesterone: Role of Wnt Signalling

  • Conference paper
  • First Online:
Progestins and the Mammary Gland

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/1))

Abstract

The mammary gland begins development during embryogenesis but after exposure to hormonal changes during puberty and pregnancy undergoes extensive further development. Hormonal changes are key regulators in the cycles of proliferation, differentiation, apoptosis and remodelling associated with pregnancy, lactation and involution following weaning. These developmental processes within the breast epithelium can be explained by the presence of a long-lived population of tissue-specific stem cells. The longevity of these stem cells makes them susceptible to accumulating genetic change and consequent transformation. The ovarian steroid progesterone, acting via the secreted factor Wnt4, is known to be essential for side branching of the mammary gland. One function of Wnt proteins is self-renewal of adult tissue stem cells, suggesting that progesterone may exert its effects within the breast, at least partly, by regulating the mammary stem cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5:R1–8

    Article  PubMed  Google Scholar 

  • Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653

    Article  PubMed  CAS  Google Scholar 

  • Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A, Raffoul W, Fiche M, Dotto GP, Brisken C (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 103:3799–3804

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A (2005) Wnt pathway activation: new relations and locations. Cell 120:11–14

    PubMed  CAS  Google Scholar 

  • Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D (2003) Hematopoietic stem cells. Birth Defects Res C Embryo Today 69:219–229

    Article  PubMed  CAS  Google Scholar 

  • Boras-Granic K, Chang H, Grosschedl R, Hamel PA (2006) Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 295:219–231

    Article  PubMed  CAS  Google Scholar 

  • Boulanger CA, Wagner KU, Smith GH (2005) Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 24:552–560

    Article  PubMed  CAS  Google Scholar 

  • Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA (1998) A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 95:5076–5081

    Article  PubMed  CAS  Google Scholar 

  • Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654

    PubMed  CAS  Google Scholar 

  • Chang CF, Westbrook R, Ma J, Cao D (2007) Transforming growth factor-beta signaling in breast cancer. Front Biosci 12:4393–4401

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA, Rosen JM (2007) Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci 120:468–477

    Article  PubMed  CAS  Google Scholar 

  • Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE (2004) Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819–4829

    Article  PubMed  CAS  Google Scholar 

  • Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  • Clarke RB, Anderson E, Howell A (2004) Steroid receptors in human breast cancer. Trends Endocrinol Metab 15:316–323

    Article  PubMed  CAS  Google Scholar 

  • Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456

    Article  PubMed  CAS  Google Scholar 

  • Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297:444–460

    Article  PubMed  CAS  Google Scholar 

  • Clemmons M, Gross P (2001) Estrogen and the risk of breast cancer. N Engl J Med 344:276–285

    Article  Google Scholar 

  • Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12:364–371

    Article  PubMed  CAS  Google Scholar 

  • Deome KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    PubMed  CAS  Google Scholar 

  • Dexter TM, Spooncer E (1987) Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 3:423–441

    Article  PubMed  CAS  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–615

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10:75–86

    Article  PubMed  Google Scholar 

  • Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH (2005) Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol 167:409–417

    Article  PubMed  CAS  Google Scholar 

  • Fillmore C, Kuperwasser C (2007) Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res 9:303

    Article  PubMed  Google Scholar 

  • Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1:55–67

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, Bar-Peled U, Li M (1997) Apoptosis and mammary gland involution: reviewing the process. Apoptosis 2:19–24

    Article  PubMed  CAS  Google Scholar 

  • Gavin BJ, McMahon AP (1992) Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol Cell Biol 12:2418–2423

    PubMed  CAS  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hatsell S, Frost AR (2007) Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 12:163–173

    Article  PubMed  Google Scholar 

  • Hiremath M, Lydon JP, Cowin P (2007) The pattern of {beta}-catenin responsiveness within the mammary gland is regulated by progesterone receptor. Development 134:3703–3712

    Article  PubMed  CAS  Google Scholar 

  • Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7:17–38

    Article  PubMed  Google Scholar 

  • Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3:36–41

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Sun H, Drake J, Kittrell F, Abba MC, Deng L, Gaddis S, Sahin A, Baggerly K, Medina D, Aldaz CM (2004) From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. Cancer Res 64:7748–7755

    Article  PubMed  CAS  Google Scholar 

  • Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P (2001) Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 153:555–568

    Article  PubMed  CAS  Google Scholar 

  • Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M (2006) Targeting the EGFR pathway for cancer therapy. Curr Med Chem 13:3483–3492

    Article  PubMed  CAS  Google Scholar 

  • Jones PH (1997) Epithelial stem cells. Bioessays 19:683–690

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Lemischka IR (1990) Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 4:220–232

    Article  PubMed  CAS  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    PubMed  CAS  Google Scholar 

  • Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, Watson CJ (2003) A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130:3459–3468

    Article  PubMed  CAS  Google Scholar 

  • Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101:4966–4971

    Article  PubMed  CAS  Google Scholar 

  • Lane TF, Leder P (1997) Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144

    Article  PubMed  CAS  Google Scholar 

  • Laron Z, Pauli R, Pertzelan A (1989) Clinical evidence on the role of estrogens in the development of the breasts. Proc R Soc Edinburgh 95:13–22

    Google Scholar 

  • Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858

    Article  PubMed  CAS  Google Scholar 

  • Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M, Gifford A, Reinhardt F, Popescu NC, Guo W, Eaton EN, Lodish HF, Weinberg RA (2007) Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 67:8131–8138

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97:4262–4266

    Article  PubMed  CAS  Google Scholar 

  • Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO (2006) The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281:35081–35087

    Article  PubMed  CAS  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C, Christensen E, Schmidt SS, Roche PC, Smith DI, Thibodeau SN (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26:146–147

    Article  PubMed  CAS  Google Scholar 

  • Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103:2196–2201

    Article  PubMed  CAS  Google Scholar 

  • Mikami T, Saegusa M, Mitomi H, Yanagisawa N, Ichinoe M, Okayasu I (2001) Significant correlations of E-cadherin, catenin, and CD44 variant form expression with carcinoma cell differentiation and prognosis of extrahepatic bile duct carcinomas. Am J Clin Pathol 116:369–376

    Article  PubMed  CAS  Google Scholar 

  • Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13:157–162

    Article  PubMed  CAS  Google Scholar 

  • Naccarato AG, Viacava P, Vignati S, Fanelli G, Bonadio AG, Montruccoli G, Bevilacqua G (2000) Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch 436:431–438

    Article  PubMed  CAS  Google Scholar 

  • Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1:57–64

    Article  PubMed  CAS  Google Scholar 

  • Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451

    Article  PubMed  CAS  Google Scholar 

  • Parkin NT, Kitajewski J, Varmus HE (1993) Activity of Wnt-1 as a transmembrane protein. Genes Dev 7:2181–2193

    Article  PubMed  CAS  Google Scholar 

  • Petersen OW, Hoyer PE, van Deurs B (1987) Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47:5748–5751

    PubMed  CAS  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  • Proia DA, Kuperwasser C (2006) Reconstruction of human mammary tissues in a mouse model. Nat Protoc 1:206–214

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227

    Article  PubMed  CAS  Google Scholar 

  • Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3:793–801

    Article  PubMed  CAS  Google Scholar 

  • Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58:225–236

    Article  PubMed  CAS  Google Scholar 

  • Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 9:R63

    Article  PubMed  Google Scholar 

  • Schryver B, Hinck L, Papkoff J (1996) Properties of Wnt-1 protein that enable cell surface association. Oncogene 13:333–342

    PubMed  CAS  Google Scholar 

  • Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, Rosen JM (1998) C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 12:1917–1928

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336

    Article  PubMed  CAS  Google Scholar 

  • Smalley MJ, Clarke RB (2005) The mammary gland “side population”: a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10:37–47

    Article  PubMed  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254

    Article  PubMed  CAS  Google Scholar 

  • Travis RC, Key TJ (2003) Oestrogen exposure and breast cancer risk. Breast Cancer Res 5:239–247

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625

    Article  PubMed  CAS  Google Scholar 

  • Turashvili G, Bouchal J, Burkadze G, Kolar Z (2006) Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213–223

    Article  PubMed  CAS  Google Scholar 

  • Tworoger SS, Hankinson SE (2006) Prolactin and breast cancer risk. Cancer Lett 243:160–169

    Article  PubMed  CAS  Google Scholar 

  • Ugolini F, Adelaide J, Charafe-Jauffret E, Nguyen C, Jacquemier J, Jordan B, Birnbaum D, Pebusque MJ (1999) Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and fibroblast growth factor receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene 18:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F, Penault-Llorca F, Longy M, Jacquemier J, Birnbaum D, Pebusque MJ (2001) WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20:5810–5817

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M, Oosterwegel M, Dooijes D, Clevers H (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10:123–132

    PubMed  Google Scholar 

  • Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1–17

    Article  PubMed  CAS  Google Scholar 

  • Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101

    Article  PubMed  CAS  Google Scholar 

  • Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353:831–837

    Article  PubMed  CAS  Google Scholar 

  • Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC (1994) Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214

    Article  PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    PubMed  CAS  Google Scholar 

  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    Article  PubMed  CAS  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Clarke .

Editor information

O. Conneely C. Otto

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Lamb, R., Harrison, H., Clarke, R.B. (2008). Mammary Development, Carcinomas and Progesterone: Role of Wnt Signalling. In: Conneely, O., Otto, C. (eds) Progestins and the Mammary Gland. Ernst Schering Foundation Symposium Proceedings, vol 2007/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2008_074

Download citation

  • DOI: https://doi.org/10.1007/2789_2008_074

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73492-5

  • Online ISBN: 978-3-540-73493-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics