Biomimetic Organocatalytic C–C-Bond Formations

  • D. Enders
  • M. R. M. Hüttl
  • O. Niemeier
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/2)


Mother Nature utilizes simple precursors to build up complex organic molecules efficiently. One important example is the C3 building block dihydroxyacetone phosphate, which is used in various enzyme-catalyzed reactions. Following this biosynthetic strategy the DHAP equivalent ‘dioxanone’ can be used in organocatalytic reactions to synthesize sugars, aminosugars, carbasugars, polyoxamic acids and sphingosines. In this respect, organocatalytic domino reactions can also be seen as biomimetic as they are reminiscent of tandem reactions that may occur during biosyntheses of complex natural products. In nature, the coenzyme thiamin (vitamin B1), a natural thiazolium salt, is used in biochemical nucleophilic acylations (‘Umpolung’). The catalytic active species is a nucleophilic carbene. Mimicking this approach, organocatalytic carbene catalysis has emerged to an exceptionally fruitful research area, which is used in asymmetric C–C bond formations.


Enantiomeric Excess Reductive Amination Mannich Reaction Aldol Reaction Aldol Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acevedo CM, Kogut EF, Lipton MA (2001) Synthesis and analysis of the sterically constrained l-glutamine analogues (3S,4R)-3,4-dimethyl-l-glutamine and (3S,4R)-3,4-dimethyl-l-pyroglutamic acid. Tetrahedron 57:6353Google Scholar
  2. Lehninger AL (1993) Principles of biochemistry. Worth, New YorkGoogle Scholar
  3. Alexander C, Rietschel ET (1999) Bakterielle Lipopolysaccharide-Hochaktive Stimulatoren der angeborenen Immunität. BIOspektrum (Heidelb) 4:275–281Google Scholar
  4. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an. evolutionary perspective. Chem Rev 102:439Google Scholar
  5. Arduengo AJ 3rd (1999) Looking for stable carbenes: the difficulty in starting anew. Acc Chem Res 32:913Google Scholar
  6. Arduengo AJ 3rd, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361Google Scholar
  7. Arduengo AJ 3rd, Dias HVR, Harlow RL, Kline M (1992) Electronic stabilization of nucleophilic carbenes. J Am Chem Soc 114:5530Google Scholar
  8. Arduengo AJ 3rd, Kraftczyk R (1998) Auf der Suche nach Stabilen Carbenen. R Chem Unserer Zeit 32:6Google Scholar
  9. Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed Engl 37:1044–1070Google Scholar
  10. Atsumi S, Umezawa K, Iinuma H, Naganawa H, Nakamura H, Iitaka Y, Takeuchi T (1990a) Production, isolation and structure determination of a novel beta-glucosidase inhibitor, cyclophellitol, from Phellinus sp. J Antibiot (Tokyo) 43:49–53Google Scholar
  11. Atsumi S, Iinuma H, Nosaka C, Umezawa K (1990b) Biological activities of cyclophellitol. J Antibiot (Tokyo) 43:1579–1585Google Scholar
  12. Bach G, Breiding-Mack S, Grabley S, Hammann P, Hütter K, Thiericke R, Uhr H, Wink J, Zeeck A (1993) Gabosines, new carba-sugars from Streptomyces. Justus Liebigs Ann Chem 33:241–250Google Scholar
  13. Banaszek A, Mlynarski J (2005) Recent advances in the chemistry of bioactive 3-deoxy-ulosonic acids. Stud Nat Prod Chem 30:419Google Scholar
  14. Banwell M, De Savi C, Watson K (1998) Diastereoselective synthesis of (2)-N-acetylneuraminic acid (Neu5Ac) from a non-carbohydrate source. J Chem Soc [Perkin 1] 1998:2251–2252Google Scholar
  15. Barenholz Y, Gatt S (1967) The utilization and degradation of phytosphingosine by rat liver. Biochem Biophys Res Commun 27:319–324Google Scholar
  16. Beeson TD, MacMillan DWC (2005) Enantioselective organocatalytic alpha-fluorination of aldehydes. J Am Chem Soc 127:8826–8828Google Scholar
  17. Berecibar A, Grandjean C, Siriwardena A (1999) Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: mannostatins, trehazolin, allosamidins, and their analogues. Chem Rev 99:779–844Google Scholar
  18. Bobbio C, Gouverneur V (2006) Catalytic asymmetric fluorinations.OrgBiomol Chem 4:2065Google Scholar
  19. Böhler P, Tamm C (1967) The homo-isoflavones, a new class of natural product. Isolation and structure of eucomin and eucomol. Tetrahedron Lett 36:3479Google Scholar
  20. Borysenko CW, Spaltenstein A, Straub JA, Whitesides GM (1989) The synthesis of aldose sugars from half-protected dialdehydes using rabbit muscle aldolase. J Am Chem Soc 111:9275Google Scholar
  21. Bourissou D, Bertrand G (1999) The chemistry of phosphinocarbenes. Adv Organomet Chem 44:175Google Scholar
  22. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Stable carbenes. Chem Rev 100:39–92Google Scholar
  23. Breslow R (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80:3719Google Scholar
  24. Breuer K (1997) PhD thesis. RWTH Aachen UniversityGoogle Scholar
  25. Brodesser S, Sawatzki P, Kolter T (2003) Bioorganic chemistry of ceramide. Eur J Org Chem 11:2021–2034Google Scholar
  26. Calvin M (1962) The path of carbon in photosynthesis. Angew Chem Int Ed Engl 1:65Google Scholar
  27. Carter HE, Clemer WD, Lands WM, Muller KL, Tomizawa HH (1954) Biochemistry of the sphingolipides. VIII. Occurrence of a long chain base in plant phosphatides. J Biol Chem 206:613–623Google Scholar
  28. Casiraghi G, Rassu G, Spanu P (1995) Stereoselective approaches to bioactive carbohydrates and alkaloids-with a focus on recent syntheses drawing from the chiral pool. Chem Rev 95:1677Google Scholar
  29. Castells J, Geijo F, López Calahorra F (1980) The “formoin reaction”: a promising entry to carbohydrates from formaldehyde. Tetrahedron Lett 21:4517Google Scholar
  30. César V, Bellemin-Laponnaz S, Gade LH (2004) Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem Soc Rev 33:619Google Scholar
  31. Chambers RD (2004) Fluorine in organic chemistry. Blackwell, OxfordGoogle Scholar
  32. Chapman CJ, Frost CG (2007) Tandem and domino catalytic strategies for enantioselective synthesis. Synthesis 2007:1–21Google Scholar
  33. Christmann M (2005) New developments in the asymmetric Stetter reaction. Angew Chem Int Ed Engl 44:2632–2634Google Scholar
  34. Chupak L, Luebbers T, Trost BM (1998) Total synthesis of (±)- and (+)-valienamine via a strategy derived from new palladium-catalyzed reactions. J Am Chem Soc 120:1732Google Scholar
  35. Ciganek E (1995) Esters of 2,3-dihydro-3-oxobenzofuran-2-acetic acid and 3,4-dihydro-4-oxo-2H-1-benzopyran-3-acetic acid by intramolecular Stetter reactions. Synthesis 1995:1311–1314Google Scholar
  36. Cookson R, Lane RM (1976) Conversion of dialdehydes into cyclic α-ketols by thiazolium salts: synthesis of cyclic 2-hydroxy-2-enones. J Chem Soc Chem Commun 1976:804Google Scholar
  37. Crouch NR, Bangnai V, Mulholland DA (1999) Homoisoflavanones from three South African Scilla species. Phytochemistry 51:943Google Scholar
  38. Danishefsky SJ, DeNinno MP, H Chen S (1988) Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-d-manno-2-octulosonic acid. A new and stereospecific approach to sialo and 3-deoxy-d-manno-2-octulosonic acid conjugates. J Am Chem Soc 110:3929Google Scholar
  39. Davis FA, Weismiller MC (1990) Enantioselective synthesis of tertiary α-hydroxy carbonyl compounds using [(8,8-dichlorocamphoryl)sulfonyl]oxaziridine. J Org Chem 55:3715Google Scholar
  40. DeNinno MP (1991) The synthesis and glycosidation of N-acetylneuraminic acid. Synthesis 1991:583–593Google Scholar
  41. Despagnet E, Gornitzka H, Rozhenko AB, Schoeller WW, Bourissou D, Bertrand G (2002) Stable non-push-pull phosphanylcarbenes: NMR spectroscopic characterization of a methylcarbene. Angew Chem Int Ed Engl 41:2835–2837Google Scholar
  42. Díez-González S, Nolan SP (2005) Carbene and transition metal-mediated transformations. Annu Rep Prog Chem Sect B Org Che 101:171–191Google Scholar
  43. Dimmock JR, Sidhu KK, Chen M, Reid RS, Allen TM, Kao GY, Truitt GA (1993) Anticonvulsant activities of some arylsemicarbazones displaying potent oral activity in the maximal electroshock screen in rats accompanied by high protection indices. Eur J Med Chem 36:2243–2252Google Scholar
  44. Dixon DA, Dobbs KD, Arduengo AJ 3rd, Bertrand G (1991) Electronic structure of λ5-phosphaacetylene and corresponding triplet methylenes. J Am Chem Soc 113:8782Google Scholar
  45. Dondoni A, Marra A, Merino P (1994) Installation of the pyruvate unit in glycidic aldehydes via a Wittig olefination-Michael addition sequence utilizing a thiazole-armed carbonyl ylide. A new stereoselective route to 3-deoxy-2-ulosonic acids and the total synthesis of DAH, KDN, and 4-epi-KDN. J Am Chem Soc 116:3324Google Scholar
  46. Dudding T, Houk KN (2004) Computational predictions of stereochemistry in asymmetric thiazolium- and triazolium-catalyzed benzoin condensations. Proc Natl Acad Sci U S A 101:5770–5775Google Scholar
  47. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Glycobiology. Chem Rev 96:683–720Google Scholar
  48. Enders D (1993) Enzymemimetic C–C and C–N bond formations. In: Stereoselective synthesis. Springer-Verlag, Berlin Heidelberg New York, p 63Google Scholar
  49. Enders D, Balensiefer T (2004) Nucleophilic carbenes in asymmetric organocatalysis. Acc Chem Res 37:534–541Google Scholar
  50. Enders D, Bockstiegel B (1989) Enantioselective alkylation of 2,2-dimethyl-1,3-dioxan-5-one using the SAMP-/RAMP-hydrazone method. Synthesis 1989:493–496Google Scholar
  51. Enders D, Breuer K (1999) In: Comprehensive asymmetric catalysis, vol 3. Springer-Verlag, Berlin Heidelberg New York, pp 1093–1102Google Scholar
  52. Enders D, Gasperi T (2007) Proline organocatalysis as a new tool for the asymmetric synthesis of ulosonic acid precursors. Chem Commun 2007:88–90Google Scholar
  53. Enders D, Grondal C (2005) Direct organocatalytic de novo synthesis of carbohydrates. Angew Chem Int Ed Engl 44:1210–1212Google Scholar
  54. Enders D, Grondal C (2006) Direct asymmetric organocatalytic de novo synthesis of carbohydrates. Tetrahedron 62:329–337Google Scholar
  55. Enders D, Hüttl MRM (2005) Direct organocatalytic α-fluorination of aldehydes and ketones. Synlett 2005:991Google Scholar
  56. Enders D, Hüttl MRM (2006) Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441:861–863Google Scholar
  57. Enders D, Kallfass U (2002) An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angew Chem Int Ed Engl 41:1743–1745Google Scholar
  58. Enders D, Müller-Hüwen A (2004) Asymmetric synthesis of 2-amino-1,3-diols and d-erythro-sphinganine. Eur J Org Chem 2004:1732Google Scholar
  59. Enders D, Niemeier O (2004) Thiazol-2-ylidene catalysis in intramolecular crossed aldehyde-ketone benzoin reactions. Synlett 2004:2111–2114Google Scholar
  60. Enders D, Oberbörsch S (2002) Asymmetric Mannich reactions with α-silylated trimethylsilyl enol ethers and N-alkoxycarbonyl Imines. Synlett 2002:471–473Google Scholar
  61. Enders D, Potthoff M (1997) Regio- and enantioselective synthesis of alpha-fluoroketones by electrophilic fluorination of alpha-silylketone enolates with N-fluorobenzosulfonimide. Angew Chem Int Ed Engl 36:2362–2364Google Scholar
  62. Enders D, Seki A (2002) Proline-catalyzed enantioselective Michael additions of ketones to nitrostyrene. Synlett 2002:26–28Google Scholar
  63. Enders D, Vrettou M (2006) Asymmetric synthesis of (+)-polyoxamic acid via an efficient organocatalytic Mannich reaction as the key step. Synthesis 2155–2158 [and literature cited therein]Google Scholar
  64. Enders D, Dyker H, Raabe G, Runsink J (1992) Enantio- and diastereoselective synthesis of 3-substituted cyclic hemiketals of ω-hydroxy-2-oxoesters. Synlett 1992:901–903Google Scholar
  65. Enders D, Dyker H, Raabe G (1993a) Enantioselective aldol reactions with a phosphoenolpuryvate equivalent: asymmetric synthesis of 4-hydroxy-2-oxocarboxylic acid esters. Angew Chem Int Ed Engl 32:421–423Google Scholar
  66. Enders D, Bockstiegel B, Dyker H, Jegelka U, Kipphardt H, Kownatka D, Kuhlmann H, Mannes D, Tiebes J, Papadopoulos K (1993b) Enzymmimetische C–C-Verknüpfungen. In: Dechema-Monographies, vol 129. VCH, Weinheim, p 209Google Scholar
  67. Enders D, Whitehouse DL, Runsink J (1995a) Diastereo- and enantioselective synthesis of l-threo- and D-erythro-sphingosine. Chem Eur J 1:382Google Scholar
  68. Enders D, Breuer K, Raabe G, Runsink J, Teles JH, P Melder J, Ebel K, Brode S (1995b) Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a new stable carbene. Angew Chem Int Ed Engl 34:1021–1023Google Scholar
  69. Enders D, Breuer K, Runsink J, Teles JH (1996a) Chemical reactions of the stable carbene 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene. Liebigs Ann Chem 1996:2019Google Scholar
  70. Enders D, Breuer K, Teles JH (1996b) A novel asymmetric benzoin reaction catalyzed by a chiral triazolium salt. Preliminary communication. Helv Chim Acta 79:1217Google Scholar
  71. Enders D, Breuer K, Runsink J, Teles JH (1996c) The first asymmetric intramolecular Stetter reaction. Preliminary communication. Helv Chim Acta 79:1899Google Scholar
  72. Enders D, Ward D, Adam J, Raabe G (1996d) Efficient regio- and enantioselective Mannich reactions. Angew Chem Int Ed Engl 35:981–984Google Scholar
  73. Enders D, Breuer K, Teles JH, Ebel K (1997a) 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene: applications of a stable carbene in synthesis and catalysis. J Prakt Chem Chem-Ztg 339:397–399Google Scholar
  74. Enders D, Breuer K, Raabe G, Simonet J, Ghanimi A, Stegmann HB, Teles JH (1997b) A stable carbene as π-acceptor. Electrochemical reduction to the radical anion. Tetrahedron Lett 38:2833Google Scholar
  75. Enders D, Oberbörsch S, Adam J (2000) a-Silyl controlled asymmetric Mannich reactions of acyclic ketones with imines. Synlett 2000:644–646Google Scholar
  76. Enders D, Faure S, Potthoff M, Runsink J (2001) Diastereoselective electrophilic fluorination of enantiopure α-silylketones using N-fluoro-benzosulfonimide: regio- and enantioselective synthesis of α-fluoroketones. Synthesis 2001:2307–2319Google Scholar
  77. Enders D, Voith M, Ince SD (2002a) Preparation and reactions of 2,2-dimethyl-1,3-dioxan-5-one-SAMP-hydrazone: a versatile chiral dihydroxyacetone equivalent. Synthesis 2002:1775–1779Google Scholar
  78. Enders D, Adam J, Oberbörsch S, Ward D (2002b) Asymmetric Mannich reactions by α-silyl controlled aminomethylation of ketones. Synthesis 2002:2737–2748Google Scholar
  79. Enders D, Breuer K, Kallfass U, Balensiefer T (2003) Preparation and application of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a stable carbene. Synthesis 2003:1292–1295Google Scholar
  80. Enders D, Voith M, Lenzen A (2005a) The dihydroxyacetone unit—a versatile C3 building block in organic synthesis. Angew Chem Int Ed Engl 44:1304Google Scholar
  81. Enders D, Grondal C, Vrettou M, Raabe G (2005b) Direct organocatalytic de novo synthesis of carbohydrates. Angew Chem Int Ed Engl 44:4079Google Scholar
  82. Enders D, Paleček J, Grondal C (2006a) A direct organocatalytic entry to sphingoids: asymmetric synthesis of D-arabino- and L-ribo-phytosphingosine. Chem Commun 2006:655–657Google Scholar
  83. Enders D, Grondal C, Vrettou M (2006b) Efficient entry to amino sugars and derivatives via asymmetric organocatalytic Mannich reactions. Synthesis 2006:3597Google Scholar
  84. Enders D, Niemeier O, Balensiefer T (2006c) Asymmetric intramolecular crossed-benzoin reactions by N-heterocyclic carbene catalysis. Angew Chem Int Ed Engl 45:1463Google Scholar
  85. Enders D, Niemeier O, Raabe G (2006d) Asymmetric synthesis of chromanones via N-heterocyclic carbene catalyzed intramolecular crossed-benzoin reactions. Synlett 2006:2431Google Scholar
  86. Enders D, Grondal C, Hüttl MRM (2007a) Asymmetric Organocatalytic Domino Reactions. Angew Chem Weinheim Bergstr Ger 119:1590Google Scholar
  87. Enders D, Hüttl MRM, Runsink J, Raabe G, Wendt B (2007b) Organocatalytic one pot asymmetric synthesis of functionalized tricyclic carbon skeletons via a triple cascade/Diels-Alder sequence. Angew Chem 119:471Google Scholar
  88. Enders D, Balensiefer T, Niemeier O, Christmann M (2007c) Nucleophilic N-heterocyclic carbenes om asymmetric organocatalysis. In: Dalko PI (ed) Enantioselective organocatalysis—reactions and experimental procedures. Wiley-VCH, Weinheim, p 331Google Scholar
  89. Ennis MD, Hoffman RL, Ghazal NB, Old DW, Mooney PA (1996) Asymmetric synthesis of cis-fused bicyclic pyrrolidines and pyrrolidinones via chiral polycyclic lactams. J Org Chem 61:5813Google Scholar
  90. Garrison JC, Youngs WJ (2005) Ag(I) N-heterocyclic carbene complexes: synthesis, structure, and application. Chem Rev 105:3978–4008Google Scholar
  91. Gerhards AU, Leeper FJ (1997) Synthesis of and asymmetric induction by chiral polycyclic thiazolium salts. Tetrahedron Lett 38:3615–3618Google Scholar
  92. Grondal C (2006) Asymmetrische organokatalytische de novo Synthese von Kohlenhydraten, Phytosphingosinen und 1-epi-(+)MK7607. Dissertation. RWTH AachenGoogle Scholar
  93. Grondal C, Enders D (2006) A direct entry to carbasugars: asymmetric synthesis of 1-epi-(+)-MK7607. Synlett 2006:3507–3509Google Scholar
  94. Guo HC, Ma JA (2006) Catalytic asymmetric tandem transformations triggered by conjugate additions. Angew Chem Int Ed Engl 45:354–366Google Scholar
  95. Hachisu Y, Bode JW, Suzuki K (2003) Catalytic intramolecular crossed aldehyde--ketone benzoin reactions: a novel synthesis of functionalized preanthraquinones. J Am Chem Soc 125:8432–8433Google Scholar
  96. Hachisu Y, Bode JW, Suzuki K (2004) Thiazolium ylide-catalyzed intramolecular aldehydeketone benzoin-forming reactions: substrate scope. Adv Synth Catal 346:1097–1100Google Scholar
  97. Hahn FE (2006) Heterocyclic carbenes. Angew Chem Int Ed Engl 45:1348–1352Google Scholar
  98. Hamashima Y, Sodeoka M (2006) Enantioselective fluorination reactions catalyzed by chiral palladium complexes. Synlett 2006:1467–1478Google Scholar
  99. Hayashi Y, Gotoh H, Hayashi T, Shoji M (2005) Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew Chem Int Ed Engl 44:4212–4215Google Scholar
  100. Heller W, Tamm C (1981) Homoisoflavones and biogenetically related compounds. Fortschr Chem Org Naturst 40:105Google Scholar
  101. Herrmann WA (2002) N-Heterocyclische Carbene: ein neues Konzept in der metallorganischen Katalyse. Angew Chem 114:1342Google Scholar
  102. Herrmann WA, Koecher C (1997) N-Heterocyclic carbenes. Angew Chem Int Ed Engl 365:2162–2187Google Scholar
  103. Holstein Wagner S, Lundt I (2001) Synthesis of carba sugars from aldonolactones. Part IV. Stereospecific synthesis of carbaheptopyranoses by radical-induced carbocyclisation of 2,3-unsaturated octonolactones. J Chem Soc [Perkin 1] 2001:780Google Scholar
  104. Horii S, Iwasa T, Mizuta E, Kameda YJ (1971) Studies on validamycins, new antibiotics. VI. Validamine, hydroxyvalidamine and validatol, new cyclitols. J Antibiot (Tokyo) 24:59–63Google Scholar
  105. Huang Y, Walji AM, Larsen CH, MacMillan DWC (2005) Enantioselective organo-cascade catalysis. J Am Chem Soc 127:15051–15053Google Scholar
  106. Igau A, Grutzmacher H, Baceiredo A, Bertrand G (1988) Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J Am Chem Soc 110:6463Google Scholar
  107. Igau A, Baceiredo A, Trinquier G, Betrand G (1989) Bis (diisopropylamino) phosphino] trimethylsilylcarbene: a stable nucleophilic carbene. Angew Chem Int Ed Engl 28:621Google Scholar
  108. Ishikawa T, Shimizu Y, Kudoh T, Saito S (2003) Conversion of D-glucose to cyclitol with hydroxymethyl substituent via intramolecular silyl nitronate cycloaddition reaction: application to total synthesis of (+)-cyclophellitol. Org Lett 5:3879–3882Google Scholar
  109. Isogai A, Sakuda S, Nakayama J, Watanabe S, Suzuki S (1987) Isolation and structural elucidation of a new cyclitol derivative, streptol, as a plant growth regulator. Agric Biol Chem 51:2277Google Scholar
  110. Isono K, Asahi K, Suzuki S (1969) Studies on polyoxins, antifungal antibiotics. 13. The structure of polyoxins. J Am Chem Soc 91:7490–7505Google Scholar
  111. Jordan F (2003) Current mechanistic understanding of thiamine diphosphate-dependent enzymatic reactions. Nat Prod Rep 20:184–201Google Scholar
  112. Kameda Y, Horii SJ (1972) The unsaturated cyclitol part of the new antibiotics, the validam. J Chem Soc Chem Commun 1972:746Google Scholar
  113. Kameda Y, Asano N, Yoshikawa M, Takeuchi M, Yamaguchi T, Matsui K, Horii S, Fukase H (1984) Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J Antibiot (Tokyo) 37:1301–1307Google Scholar
  114. Kamitakahara H, Suzuki T, Nishigori N, Suzuki Y, Kamie O, Wong C (1998) Ein Lysogangliosid/Poly-l-glutaminsäure-Konjugat als picomolarer Inhibitor von Influenza-Hämagglutinin. Angew Chem Weinheim Bergstr Ger 110:1607Google Scholar
  115. Karlsson KA, Samuelsson BE, Steen GO (1968) Structure and function of sphinolipids. 1. Differences in sphingolipid long-chain base pattern between kidney cortex, medulla, and papillae. Acta Chem Scand 22:1361–1364Google Scholar
  116. Katz L (1997) Manipulation of modular polyketide synthases. Chem Rev 97:2557–2576Google Scholar
  117. Kauer Zinn F, Viciu MS, Nolan SP (2004) Carbenes: reactivity and catalysis. Annu Rep Prog Chem Sect B Org Che 100:231–249Google Scholar
  118. Kawano Y, Higuchi R, Isobe R (1988) Biologically active glycosides from asteroidea, XIII. Glycosphingolipids from the starfish Acanthaster planci, 2. Isolation and structure of six new cerebrosides. T Komori Liebigs Ann Chem 1988:19Google Scholar
  119. Kerr MS, Rovis T (2003) Effect of the Michael Acceptor in the asymmetric intramolecular Stetter reaction. Synlett 2003:1934–1936Google Scholar
  120. Kerr MS, Rovis T (2004) Enantioselective synthesis of quaternary stereocenters via a catalytic asymmetric Stetter reaction. J Am Chem Soc 126:8876–8877Google Scholar
  121. Kerr MS, Read de Alaniz J, Rovis T (2002) A highly enantioselective catalytic intramolecular Stetter reaction. J Am Chem Soc 124:10298Google Scholar
  122. Kerr MS, Read de Alaniz J, Rovis T (2005) An efficient synthesis of achiral and chiral 1,2,4-triazolium salts: bench stable precursors for N-heterocyclic carbenes. J Org Chem 70:5725–5728Google Scholar
  123. Kiefel MJ, von Itzstein M (2002) Recent advances in the synthesis of sialic acid. Chem Rev 102:471Google Scholar
  124. Kleemann A, Engel J (1982) Pharmazeutische Wirkstoffe: Synthese, Patente, Anwendungen. Thieme, StuttgartGoogle Scholar
  125. Knight RL, Leeper FJ (1997) Synthesis of and asymmetric induction by chiral bicyclic thiazolium salts. Tetrahedron Lett 38:3611Google Scholar
  126. Knight RL, Leeper FJ (1998) Comparison of chiral thiazolium and triazolium salts as asymmetric catalysts for the benzoin condensation. J Chem Soc [Perkin 1] 1998:1891Google Scholar
  127. Kobayashi S, Ishitani H (1999) Catalytic enantioselective addition to imines. Chem Rev 99:1069–1094Google Scholar
  128. Kobayashi S, Furuta T, Hayashi T, Nishijima M, Hanada K (1998) Catalytic asymmetric syntheses of antifungal sphingofungins and their biological activity as potent inhibitors of serine palmitoyltransferase (SPT). J Am Chem Soc 120:908Google Scholar
  129. Kober R, Papadopoulos K, Miltz W, Enders D, Steglich W, Reuter H, Puff H (1985) Synthesis of diastereo- and enantiomerically pure α-amino-γ-oxo acid esters by reaction of acyliminoacetates with enamines derived from 6-membered ketones. Tetrahedron 41:1693Google Scholar
  130. Kolter T (2004) Conformational restriction of sphingolipids. In: Schmuck C, Wennemers H (eds) Highlights in bioorganic chemistry: methods and applications. Wiley-VCH, Weinheim, p 48Google Scholar
  131. Kolter T, Sandhoff K (1999) Sphingolipids—their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew Chem Int Ed Engl 38:1532Google Scholar
  132. Korotkikh NI, Shvaika OP, Rayenko GF, Kiselyov AV, Knishevitsky AV, Cowley AH, Jones JN, Macdonald CLB (2005) Stable heteroaromatic carbenes of the benzimidazole and 1,2,4-triazole series. Arkivoc 8:10–43Google Scholar
  133. Khosla C (1997) Harnessing the biosynthetic potential of modular polyketide synthases. Chem Rev 97:2577Google Scholar
  134. Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219Google Scholar
  135. Lapworth A (1903) Qualitative study on the formation of cyanohydrin in water. J Chem Soc 83:995Google Scholar
  136. Li H, Matsunaga S, Fusetani N (1995) Halicylindrosides, antifungal and cytotoxic cerebrosides from the marine sponge Halichondria cylindrata. Tetrahedron 51:2273Google Scholar
  137. Li YT, Hirabayashi Y, DeGasperi R, Yu RK, Ariga T, Koerner TAW, C Li S (1984) Isolation and characterization of a novel phytosphingosine-containing GM2 ganglioside from mullet roe (Mugil cephalus). J Biol Chem 259:8980–8985Google Scholar
  138. Li YW, Zhu LY, Huang L (2004) Studies on the total synthesis of hainanolide (VIII)-introducing C4-methoxy group, and forming the ring E (lactone). Chin Chem Lett 15:397Google Scholar
  139. Liao J, Tao J, Lin G, Liu D (2005) Chemistry and biology of sphingolipids. Tetrahedron 61:4715Google Scholar
  140. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122:9336Google Scholar
  141. List B, Lerner RA, Barbas CF 3rd (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395Google Scholar
  142. List B, Pojarliev P, Martin HJ (2001) Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org Lett 3:2423–2425Google Scholar
  143. List B, Pojarliev P, Biller TW, Martin HJ (2002) The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols. J Am Chem Soc 124:827–833Google Scholar
  144. Liu Q, Rovis T (2006) Asymmetric synthesis of hydrobenzofuranones via desymmetrization of cyclohexadienones using the intramolecular Stetter reaction. J Am Chem Soc 128:2552–2553Google Scholar
  145. Lubineau A, Billault I (1998) New access to unsaturated keto carba sugars (gabosines) using an intramolecular Nozaki-Kishi reaction as the key step. J Org Chem 63:5668Google Scholar
  146. Ma JA, Cahard D (2004) Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev 104:6119Google Scholar
  147. Mann J (1999) Chemical aspects of biosynthesis. Oxford Chemistry Primers. Oxford University Press, OxfordGoogle Scholar
  148. Mannich C, Krösche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250:647–667Google Scholar
  149. Marigo M, Fielenbach D, Braunton A, Kjoersgaard A, Jørgensen KA (2005a) Enantioselective formation of stereogenic carbon-fluorine centers by a simple catalytic method. Angew Chem 117:3769Google Scholar
  150. Marigo M, Schulte T, Franzén J, Jørgensen KA (2005b) Asymmetric multicomponent domino reactions and highly enantioselective conjugated addition of thiols to alpha,beta-unsaturated aldehydes. J Am Chem Soc 127:15710–15711Google Scholar
  151. Matsumoto T, Inoue S (1983) Selective formation of triose from formaldehyde catalysed by ethylbenzothiazolium bromide. J Chem Soc Chem Commun 1983:171–172Google Scholar
  152. Matsumoto T, Yamamoto H, Inoue S (1984) Selective formation of triose from formaldehyde catalyzed by thiazolium salt. J Am Chem Soc 106:4829Google Scholar
  153. Mattson AE, Bharadwaj AR, Scheidt KA (2004) The thiazolium-catalyzed Sila-Stetter reaction: conjugate addition of acylsilanes to unsaturated esters and ketones. J Am Chem Soc 126:2314–2315Google Scholar
  154. Mattson AE, Bharadwaj AR, Zuhl AM, Scheidt KA (2006a) Thiazolium-catalyzed additions of acylsilanes: a general strategy for acyl anion addition reactions. J Org Chem 71:5715–5724Google Scholar
  155. Mattson AE, Zuhl AM, Reynolds TE, Scheidt KA (2006b) Direct nucleophilic acylation of nitroalkenes promoted by a fluoride anion/thiourea combination. J Am Chem Soc 128:4932–4933Google Scholar
  156. McCasland GE, Furuta S, Durham LJ (1966) Alicyclic carbohydrates. XXIX. The synthesis of a pseudo-hexose (2,3,4,5-tetrahydroxycyclohexanemethanol). J Org Chem 31:1516Google Scholar
  157. Mehta G, Lakshminath S (2000) A norbornyl route to cyclohexitols: stereoselective synthesis of conduritol-E, allo-inositol, MK 7607 and gabosines. Tetrahedron Lett 41:3509Google Scholar
  158. Mennen MS, Gipson JD, Kim YR, Miller SJ (2005a) Thiazolylalanine-derived catalysts for enantioselective intermolecular aldehyde-imine cross-couplings. J Am Chem Soc 127:1654Google Scholar
  159. Mennen SM, Blank JT, Tran-Dubé MB, Imbriglio JE, Miller SJ (2005b) A peptide-catalyzed asymmetric Stetter reaction. Chem Commun 2005:195–197Google Scholar
  160. Mizuhara S, Tamura R, Arata H (1951) The mechanism of thiamine action II. Proc Jpn Acad 27:302Google Scholar
  161. Moore JL, Kerr MS, Rovis T (2006) Enantioselective formation of quaternary stereocenters using the catalytic intramolecular Stetter reaction. Tetrahedron 62:11477–11482Google Scholar
  162. Mukaiyama T, Suzuki K, Yamada T, Tabusa F (1990) 4-O-Benzyl-23-O-isopropylidene-L-threose: a useful building block for stereoselective synthesis of monosaccharides. Tetrahedron 46:265Google Scholar
  163. Muñiz K (2003) Improving enantioselective fluorination reactions: chiral N-fluoro ammonium salts and transition metal catalysts. In: Schmalz HG, Wirth T (eds) Organic synthesis highlights. Wiley-VCH, WeinheimGoogle Scholar
  164. Murry JA, Frantz DE, Soheili A, Tillyer R, Grabowski EJJ, Reider PJ (2001) Synthesis of alpha-amido ketones via organic catalysis: thiazolium-catalyzed cross-coupling of aldehydes with acylimines. J Am Chem Soc 123:9696–9697Google Scholar
  165. Musser JH (1992) Carbohydrates as drug discovery leads. Annu Rep Med Chem 27:301Google Scholar
  166. Myers MC, Bharadwaj AR, Milgram BC, Scheidt KA (2005) Catalytic conjugate additions of carbonyl anions under neutral aqueous conditions. J Am Chem Soc 127:14675–14680Google Scholar
  167. Nakamura T, Hara O, Tamura T, Makino K, Hamada Y (2005) A facile synthesis of chroman-4-ones and 2,3-dihydroquinolin-4-ones with quaternary carbon using intramolecular Stetter reaction catalyzed by thiazolium salt. Synlett 2005:155–157Google Scholar
  168. Naroti T, Morita M, Akimoto K, Koezuka Y (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50:2771Google Scholar
  169. Nicolaou KC, Montagnon T, Snyder SA (2003) Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. Chem Commun 5:551Google Scholar
  170. Nicolaou KC, Edmonds DJ, Bulger PC (2006) Cascade reactions in total synthesis. Angew Chem Int Ed Engl 45:7134–7186Google Scholar
  171. Nieman JA, Ennis MD (2000) Enantioselective synthesis of the pyrroloquinoline core of the martinellines. Org Lett 2:1395–1397Google Scholar
  172. Niemeier O (2006) PhD thesis. RWTH Aachen UniversityGoogle Scholar
  173. Nilsson U, Meshalkina L, Lindqvist Y, Schneider G (1997) Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem 272:1864–1869Google Scholar
  174. Notz W, List B (2000) Catalytic asymmetric synthesis of anti-1,2-diols. J Am Chem Soc 122:7386Google Scholar
  175. Oda T (1952) Compounds of penicillin-producing molds. IV. Fungus cerebrin. J Pharm Soc Jpn 72:142Google Scholar
  176. Ogawa S (1988) Synthetic studies on glycosidase inhibitors composed of 5a-carba-sugars. In: Chapleur Y (ed) Carbohydrate mimics, concepts and methods. Wiley-VCH, Weinheim, pp 87Google Scholar
  177. Ogawa S, Tsunoda H (1992) Pseudo-sugars. XXXI. New synthesis of 2-amino-5a-carba-2-deoxy-α-DL-glucopyranose and its transformation into valienamine and valiolamine analogues. Liebigs Ann Chem 6:637–641Google Scholar
  178. Okabe K, Keenan RW, Schmidt G (1968) Phytosphingosine groups as quantitatively significant components of the sphingolipids of the mucosa of the small intestines of some mammalian species. Biochem Biophys Res Commun 31:137–143Google Scholar
  179. Omar F, Frahm AW (1989) Asymmetrische reduktive Aminierung von Cycloalkanonen, 9. Mitt.: Die asymmetrische Synthese GABA-verwandter cycloaliphatischer Aminosäuren Arch Pharm 322:461Google Scholar
  180. Omar F, Frahm AW (1990) Asymmetrische reduktive Aminierung von Cycloalkanonen, 10. Mitt.: EPC-Synthese cis-bicyclischer Lactame und Amine. Arch Pharm 323:923Google Scholar
  181. Pellisier H (2006) Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 62:2143Google Scholar
  182. Pellissier H (2006) Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron 62:1619Google Scholar
  183. Perry MC, Burgess K (2003) Chiral N-heterocyclic carbene-. transition metal complexes in asymmetric catalysis. Tetrahedron Asymmetry 14:951–961Google Scholar
  184. Piers E, Romero MA (1993) Total synthesis of amphilectane-type diterpenoids: (±)-8-isocyano-10,14-amphilectadiene. Tetrahedron 49:5791Google Scholar
  185. Pihko PM (2006) Enantioselective alpha-fluorination of carbonyl compounds: organocatalysis or metal catalysis? Angew Chem Int Ed Engl 45:544–547Google Scholar
  186. Prakash GK, Beier P (2006) Construction of asymmetric fluorinated carbon centers. Angew Chem Int Ed Engl 45:2172–2174Google Scholar
  187. Prieto A, Halland N, Jørgensen KA (2005) Novel imidazolidine-tetrazole organocatalyst for asymmetric conjugate addition of nitroalkanes. Org Lett 7:3897–3900Google Scholar
  188. Raabe G, Breuer K, Enders D (1996) The role of conjugate interaction in stable carbenes of the 1,2,4-triazol-5-ylidene type and their energy of dimerisation. An ab initio study. Z Naturforsch [B] 51a:95–101Google Scholar
  189. Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed Engl 44:1602–1634Google Scholar
  190. Rassu G, Auzzas D, Pinna L, Battistini L, Zanardi F, Marzocchi L, Acquotti D, Casiraghi G (2000) Variable strategy toward carbasugars and relatives. 1. Stereocontrolled synthesis of pseudo-beta-D-gulopyranose, pseudo-beta-D-xylofuranose, (pseudo-beta-D-gulopyranosyl)amine, and (pseudo-beta-D-xylofuranosyl)amine. J Org Chem 65:6307–6318Google Scholar
  191. Read de Alaniz J, Rovis T (2005) A highly enantio- and diastereoselective catalytic intramolecular Stetter reaction. J Am Chem Soc 127:6284–6289Google Scholar
  192. Reynolds NT, Rovis T (2005) The effect of pre-existing stereocenters in the intramolecular asymmetric Stetter reaction. Tetrahedron 61:6368–6378Google Scholar
  193. Li LS, Wu YL (2002) Synthesis of 3-deoxy-2-ulosonic acid KDO and 4-epi-KDN, a highly efficient approach of 3-C homologation by propargylation and oxidation. Tetrahedron 58:9049Google Scholar
  194. Schauer R (1982) Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40:131Google Scholar
  195. Schauer R (ed) (1982) Sialic acids—chemistry, metabolism, function. Cell biology monographs, vol 10. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  196. Schoerken U, Sprenger GA (1998) Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229–243Google Scholar
  197. Sears P, Wong CH (1998) The role of carbohydrates in biologically active natural products. Cell Mol Life Sci 54:223–252Google Scholar
  198. Seebach D (1979) Methoden der Reaktivitätsumpolung. Angew Chem Weinheim Bergstr Ger 91:259–278Google Scholar
  199. Shenbagamurthi P, Smith HA, Becker JM, Steinfeld A, Naider F (1983) Design of anticandidal agents: synthesis and biological properties of analogues of polyoxin L. J Med Chem 26:1518–1522Google Scholar
  200. Shimizu M, Hiyama T (2005) Modern synthetic methods for fluorine-substituted target molecules. Angew Chem Int Ed Engl 44:214–231Google Scholar
  201. Silvestri MG, Desantis G, Mitchell M, Wong CH (2003) Asymmetric aldol reactions using aldolases. Top Stereochem 23:267Google Scholar
  202. Soleilhavoup M, Baceiredo A, Treutler O, Ahlrichs R, Nieger M, Bertrand G (1992) Synthesis and X-ray crystal structure of [(iso-Pr2N)2P(H)CP(N-iso-Pr2)2]+CF3SO3−: a carbene, a cumulene, or a phosphaacetylene?. J Am Chem Soc 114:10959Google Scholar
  203. Sollogoub M, Sinay P (2006) From sugars to carba-sugars. In: Levy DE, Fügedi P (eds) The organic chemistry of sugars, chap 8. CRC Press, Boca RatonGoogle Scholar
  204. Soloshonok VA (ed) (1999) Enantiocontrolled synthesis of fluoro-organic compounds. Stereochemical challenges and biomedicinal targets. Wiley, New YorkGoogle Scholar
  205. Song C, Jiang S, Singh G (2001) Syntheses of (−)-MK 7607 and other carbasugars from(−)-shikimic acid. Synlett 12:1983Google Scholar
  206. Sprenger GA, Pohl M (1999) Synthetic potential of thiamin. diphosphate-dependent enzymes. J Mol Catal B: Enzymatic 6:145–159Google Scholar
  207. Staunton J, Weissmann KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416Google Scholar
  208. Steiner DD, Mase N, Barbas CF 3rd (2005) Direct asymmetric—fluorination of aldehydes. Angew Chem Weinheim Bergstr Ger 117:3772–3776Google Scholar
  209. Stetter H (1976) Die katalysierte Addition von Aldehyden an aktivierte Doppelbindungen–Ein neues Syntheseprinzip. Angew Chem Weinheim Bergstr Ger 88:695Google Scholar
  210. Stetter H, Kuhlmann H (1991) The catalyzed nucleophilic addition of aldehydes to electrophilic double bonds. Org React 40:407–496Google Scholar
  211. Stetter H, Schreckenberg M (1973) A new method for addition of aldehydes to activated double bonds. Angew Chem Int Ed Engl 12:81Google Scholar
  212. Stetter H, Rämsch RY, Kuhlmann H (1976) Über die präparative Nutzung der Thiazoliumsalz-katalysierten Acyloin- und Benzoin-Bildung, I. Herstellung von einfachen Acyloinen und Benzoinen. Synthesis 1976:733–735Google Scholar
  213. Stryer L (1995) Biochemistry, 4th edn. WH Freedman and Company, New YorkGoogle Scholar
  214. Suami T (1987) Synthetic ventures in pseudo-sugar chemistry. Pure Appl Chem 59:1509Google Scholar
  215. Suami T (1990) Chemistry of pseudo-sugars. Top Curr Chem 154:257Google Scholar
  216. Suami T, Ogawa S (1990) Chemistry of carba-sugars (pseudo-sugars) and their derivatives. Adv Carbohydr Chem Biochem 48:21Google Scholar
  217. Sugai T, J Shen G, Ichikawa Y, Wong CH (1993) Synthesis of 3-deoxy-D-manno-2-octulosonic acid (KDO) and its analogs based on KDO aldolase-catalyzed reactions. J Am Chem Soc 115:413Google Scholar
  218. Sundström M, Lindqvist Y, Schneider G, Hellman U, Ronne H (1993) Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J Biol Chem 268:24346–24352Google Scholar
  219. Takamatsu K, Mikami M, Kiguschi K, Nozawa S, Iwamori M (1992) Structural characteristics of the ceramides of neutral glycosphingolipids in the human female genital tract--their menstrual cycle-associated change in the cervical epithelium and uterine endometrium, and their dissociation in the mucosa of the fallopian tube with the menstrual cycle. Biochim Biophys Acta 1165:177–182Google Scholar
  220. Takikawa H, Hachisu Y, Bode JW, Suzuki K (2006) Catalytic enantioselective crossed aldehyde-ketone benzoin cyclization. Angew Chem Int Ed Engl 45:3492–3494Google Scholar
  221. Taylor SD, Kotoris CC, Hum G (1999) Recent advances in electrophilic fluorination. Tetrahedron 55:12431Google Scholar
  222. Tekavec TN, Louie J (2007) Transition metal-catalyzed reactions using N-heterocyclic carbene ligands (besides Pd- and Ru-catalyzed reactions). Top Organomet Chem 21:195Google Scholar
  223. Teles JH, Melder JP, Ebel K, Schneider R, Gehrer E, Harder W, Brode S, Enders D, Breuer K, Raabe G (1996) The chemistry of stable carbenes. Part 2. Benzoin-type condensations of fromaldehyde catalyzed by stable carbenes. Helv Chim Acta 79:61–83Google Scholar
  224. Teles JH, Breuer K, Enders D, Gielen H (1999) One pot synthesis of 3,4-disubstituted 1-alkyl-4H-1,2,4-triazol-1-ium salts. Synth Commun 29:1–9Google Scholar
  225. Thorpe SR, Sweeley C (1967) Chemistry and metabolism of sphingolipids. On the biosynthesis of phytosphingosine by yeast. Biochemistry 6:887Google Scholar
  226. Tiebes J (1990) Diploma thesis. RWTH Aachen University, AachenGoogle Scholar
  227. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136Google Scholar
  228. Tietze LF, Beifuss U (1993) Sequential transformations in organic synthesis. A synthetic strategy with a future. Angew Chem Int Ed Engl 32:131Google Scholar
  229. Tietze LF, Haunert F (2000) In: Vögtle F, Stoddart JF, Shibasaki M (eds) Stimulating concepts in chemistry. Wiley-VCH, Weinheim, S39Google Scholar
  230. Tietze LF, Brasche G, Gerike K (2006) Domino reactions in organic chemistry. Wiley-VCH, WeinheimGoogle Scholar
  231. Traxler P, Trinks U, Buchdunger E, Mett H, Meyer T, Müller M, Regenass U, Rösel J, Lydon N (1995) [(Alkylamino)methyl]acrylophenones: potent and selective inhibitors of the epidermal growth factor receptor protein tyrosine kinase. J Med Chem 38:2441–2448Google Scholar
  232. Troy FA 2nd (1992) Polysialylation: from bacteria to brains. Glycobiology 2:5–23Google Scholar
  233. Ukai T, Tanaka R, Dokawa T (1943) A new catalyst for acyloin condensation. J Pharm Soc Jpn 63:296 (Chem Abstr 1951, 45:5148)Google Scholar
  234. Unger FM (1981) The chemistry and biological significance of 3-deoxy-D-nanno-2-octulosonic acid (KDO). Adv Carbohydr Chem Biochem 38:323Google Scholar
  235. Vance DE, Sweeley CC (1967) Quantitative determination of the neutral glycosyl ceramides in human blood. J Lipid Res 8:621Google Scholar
  236. Varki A (1992) Diversity in the sialic acids. Glycobiology 2:25Google Scholar
  237. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130Google Scholar
  238. Voight EA, Rein C, Burke SD (2002) Synthesis of sialic acids via desymmetrization by ring-closing metathesis. J Org Chem 67:8489–8499Google Scholar
  239. von Itzstein M, Kiefel MJ (1997) Static acid analogues as potential antimicrobial agents. In: Witczak ZJ, Nieforth KA (eds) Carbohydrates in drug design. Marcel Decker, New York, p 39Google Scholar
  240. Wanzlick HW (1962) Nucleophile Carben-Chemie. Angew Chem 74:129Google Scholar
  241. Wanzlick HW, Kleiner HJ (1964) Low-energy “carbenes”. Angew Chem Int Ed Engl 2:65Google Scholar
  242. Wasilke JC, Obrey SJ, Baker RT, Bazan GC (2005) Concurrent tandem catalysis. Chem Rev 105:1001–1020Google Scholar
  243. Welch JT, Eswarakrishnan S (1991) Fluorine in bioorganic chemistry. Wiley, New YorkGoogle Scholar
  244. Wenzel AG, Jacobsen EN (2002) Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of beta-aryl-beta-amino acids. J Am Chem Soc 124:12964–12965Google Scholar
  245. Wertz PW, Miethke MC, Long SA, Stauss JS, Downing DT (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84:410–412Google Scholar
  246. Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural products. Nat Prod Rep 14:99–110Google Scholar
  247. Witczak ZJ (1997) Carbohydrates: new and old targets of rational drug design. In: Carbohydrates in drug design. Marcel Dekker, New York, pp 1–37Google Scholar
  248. Wöhler F, Liebig J (1832) Untersuchungen über das Radikal der Benzoesäure. Ann Pharm 3:249–287Google Scholar
  249. Wong CH (2003) Carbohydrate based drug discovery, Chap 24. Wiley-VCH, WeinheimGoogle Scholar
  250. Wong CH (ed) (2003) Carbohydrate based drug discovery, Chap 26.3. Wiley-VCH, WeinheimGoogle Scholar
  251. Yang JW, Hechavarria Fonseca MT, List B (2005) Catalytic asymmetric reductive Michael cyclization. J Am Chem Soc 127:15036–15037Google Scholar
  252. Yoshikawa N, Chiba N, Mikawa T, Ueno S, Harimaya K, Iwata M (1994) Mitsubishi Chemical Industries patent. Jpn Kokai Tokkyo Koho JP 0630600Google Scholar
  253. Zeitler K (2005) Extending mechanistic routes in heterazolium catalysis—promising concepts for versatile synthetic methods. Angew Chem Int Ed Engl 44:7506–7510Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Organic ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations