Proteomics-Based Strategies in Kinase Drug Discovery

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/3)


Studies of drug action classically assess biochemical activity in settings which typically contain the isolated target only. Recent technical advances in mass spectrometry-based analysis of proteins have enabled the quantitative analysis of sub-proteomes and entire proteomes, thus initiating a departure from the traditional single gene—single protein—single target paradigm. Here, we review chemical proteomics-based experimental strategies in kinase drug discovery to analyse quantitatively the interaction of small molecule compounds or drugs with a defined sub-proteome containing hundreds of protein kinases and related proteins. One novel approach is based on `Kinobeads'—an affinity resin comprised of a cocktail of immobilized broad spectrum kinase inhibitors—to monitor quantitatively the differential binding of kinases and related nucleotide-binding proteins in the presence and absence of varying concentrations of a lead compound or drug of interest. Differential binding is detected by high throughput and sensitive mass spectroscopy techniques utilizing isobaric tagging reagents (iTRAQ), yielding quantitative and detailed target binding profiles. The method can be applied to the screening of compound libraries and to selectivity profiling of lead compounds directly against their endogenously expressed targets in a range of cell types and tissue lysates. In addition, the method can be used to map drug-induced changes in the phosphorylation state of the captured sub-proteome, enabling the analysis of signalling pathways downstream of target kinases.


Immobilize Metal Affinity Chromatography iTRAQ Reagent Affinity Profile Tool Compound Protein GRB2 


  1. Bantscheff M, Dumpelfeld B, Kuster B (2004) Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom 18:869–876PubMedCrossRefGoogle Scholar
  2. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer C, Ramsden N, Rick J, Kuster B, Drewes G (2007) A quantitative chemical proteomics approach reveals novel modes of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044PubMedCrossRefGoogle Scholar
  3. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758PubMedCrossRefGoogle Scholar
  4. Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11:593–597PubMedCrossRefGoogle Scholar
  5. Cohen P (2002) Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315PubMedCrossRefGoogle Scholar
  6. Darvas F, Dorman G, Krajcsi P, Puskas LG, Kovari Z, Lorincz Z, Urge L (2004) Recent advances in chemical genomics. Curr Med Chem 11:3119–3145PubMedGoogle Scholar
  7. Daub H (2005) Characterisation of kinase-selective inhibitors by chemical proteomics. Biochim Biophys Acta 1754:183–190PubMedGoogle Scholar
  8. Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100:7632–7637PubMedCrossRefGoogle Scholar
  9. Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5:4678–4683PubMedCrossRefGoogle Scholar
  10. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687PubMedCrossRefGoogle Scholar
  11. Fabian MA, Biggs WH III, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336PubMedCrossRefGoogle Scholar
  12. Fields S (2001) Proteomics. Proteomics in genomeland. Science 291:1221–1224PubMedCrossRefGoogle Scholar
  13. Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005) Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat Chem Biol 1:389–397PubMedCrossRefGoogle Scholar
  14. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945PubMedCrossRefGoogle Scholar
  15. Godl K, Wissing J, Kurtenbach A, Habenberger P, Blencke S, Gutbrod H, Salassidis K, Stein-Gerlach M, Missio A, Cotten M, Daub H (2003) An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 100:15434–15439PubMedCrossRefGoogle Scholar
  16. Graves PR, Kwiek JJ, Fadden P, Ray R, Hardeman K, Coley AM, Foley M, Haystead TA (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 62:1364–1372PubMedCrossRefGoogle Scholar
  17. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  18. Hall SE (2006) Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discov Today 11:495–502PubMedCrossRefGoogle Scholar
  19. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44PubMedCrossRefGoogle Scholar
  20. Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760PubMedCrossRefGoogle Scholar
  21. Haystead TA (2006) The purinome, a complex mix of drug and toxicity targets. Curr Top Med Chem 6:1117–1127PubMedCrossRefGoogle Scholar
  22. Huber LA (2003) Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol 4:74–80PubMedCrossRefGoogle Scholar
  23. Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637PubMedCrossRefGoogle Scholar
  24. Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le RK, Doerig C, Schultz P, Meijer L (2000) Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem Biol 7:411–422PubMedCrossRefGoogle Scholar
  25. Kowanetz K, Crosetto N, Haglund K, Schmidt MH, Heldin CH, Dikic I (2004) Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J Biol Chem 279:32786–32795PubMedCrossRefGoogle Scholar
  26. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477PubMedCrossRefGoogle Scholar
  27. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886PubMedCrossRefGoogle Scholar
  28. Lowe CR, Harvey MJ, Craven DB, Dean PD (1973) Some parameters relevant to affinity chromatography on immobilized nucleotides. Biochem J 133:499–506PubMedGoogle Scholar
  29. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  30. Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA (2006) Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6:4047–4056PubMedCrossRefGoogle Scholar
  31. Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9:641–651PubMedCrossRefGoogle Scholar
  32. Moser K, White FM (2006) Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res 5:98–104PubMedCrossRefGoogle Scholar
  33. Nuhse TS, Peck SC (2006) Peptide-based phosphoproteomics with immobilized metal ion chromatography. Methods Mol Biol 323:431–436PubMedGoogle Scholar
  34. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  35. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262PubMedCrossRefGoogle Scholar
  36. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943PubMedCrossRefGoogle Scholar
  37. Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245PubMedCrossRefGoogle Scholar
  38. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  39. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101PubMedCrossRefGoogle Scholar
  40. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15PubMedCrossRefGoogle Scholar
  41. Szardenings K, Li B, Ma L, Wu M (2004) Fishing for targets: novel approaches using small molecule baits. Drug Discovery Today: Technologies 1:9–15CrossRefGoogle Scholar
  42. Vella F, Ferry G, Delagrange P, Boutin JA (2005) NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 71:1–12PubMedCrossRefGoogle Scholar
  43. Wang Y, Li R, Du D, Zhang C, Yuan H, Zeng R, Chen Z (2006) Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res 5:846–855PubMedCrossRefGoogle Scholar
  44. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7:345–356PubMedCrossRefGoogle Scholar
  45. Wissing J, Godl K, Brehmer D, Blencke S, Weber M, Habenberger P, Stein-Gerlach M, Missio A, Cotten M, Muller S, Daub H (2004) Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol Cell Proteomics 3:1181–1193PubMedCrossRefGoogle Scholar
  46. Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW (2005) Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 25:907–920PubMedCrossRefGoogle Scholar
  47. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250PubMedCrossRefGoogle Scholar
  48. Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57:1501–1508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Cellzome AGHeidelbergGermany

Personalised recommendations