Steroid Receptor Coactivator 2: An Essential Coregulator of Progestin-Induced Uterine and Mammary Morphogenesis

  • A. Mukherjee
  • P. Amato
  • D. Craig-Allred
  • F. J. DeMayo
  • B. W. O'Malley
  • J. P. Lydon
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/1)


The importance of the progesterone receptor (PR) in transducing the progestin signal is firmly established in female reproductive and mammary gland biology; however, the coregulators preferentially recruited by PR in these systems have yet to be comprehensively investigated. Using an innovative genetic approach, which ablates gene function specifically in murine cell-lineages that express PR, steroid receptor coactivator 2 (SRC-2, also known as TIF-2 or GRIP-1) was shown to exert potent coregulator properties in progestin-dependent responses in the uterus and mammary gland. Uterine cells positive for PR (but devoid of SRC-2) led to an early block in embryo implantation, a phenotype not shared by knockouts for SRC-1 or SRC-3. In the case of the mammary gland, progestin-dependent branching morphogenesis and alveologenesis failed to occur in the absence of SRC-2, thereby establishing a critical coactivator role for SRC-2 in cellular proliferative programs initiated by progestins in this tissue. Importantly, the recent detection of SRC-2 in both human endometrium and breast suggests that this coregulator may provide a new clinical target for the future management of female reproductive health and/or breast cancer.


Mammary Gland Progesterone Receptor Recurrent Implantation Failure Flox Mouse Murine Mammary Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The technical assistance of Jie Li, Yan Ying, Jie Han, and Khauh Dao is gratefully acknowledged. We thank Drs. Pierre Chambon and Martine Gehin, Institut Clinique de la Souris, (ICS-IGBMC), BP10142, 67404 ILLKIRCH Cedex France, for providing the floxed SRC-2 mouse. This research was supported by NIH and private grants HD-42311 (F.J.D) and CA-77530 and Susan G. Komen Breast Cancer Research Program (J.P.L.).


  1. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968PubMedCrossRefGoogle Scholar
  2. Belandia B, Parker MG (2000) Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J Biol Chem 275:30801–30805PubMedCrossRefGoogle Scholar
  3. Beral V (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427PubMedCrossRefGoogle Scholar
  4. Berrevoets CA, Umar A, Trapman J, Brinkmann AO (2004) Differential modulation of androgen receptor transcriptional activity by the nuclear receptor co-repressor (N-CoR). Biochem J 379:731–738PubMedCrossRefGoogle Scholar
  5. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654PubMedGoogle Scholar
  6. Chatterton RT Jr, Lydon JP, Mehta RG, Mateo ET, Pletz A, Jordan VC (2002) Role of the progesterone receptor (PR) in susceptibility of mouse mammary gland to 7,12-dimethylbenz[a]anthracene-induced hormone-independent preneoplastic lesions in vitro. Cancer Lett 188:47–52PubMedCrossRefGoogle Scholar
  7. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177PubMedCrossRefGoogle Scholar
  8. Chen D, Huang SM, Stallcup MR (2000a) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275:40810–40816PubMedCrossRefGoogle Scholar
  9. Chen SL, Dowhan DH, Hosking BM, Muscat GE (2000b) The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 14:1209–1228PubMedGoogle Scholar
  10. Chen YH, Kim JH, Stallcup MR (2005) GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol Cell Biol 25:5965–5972PubMedCrossRefGoogle Scholar
  11. Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK (2002) A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 16:2853–2871PubMedCrossRefGoogle Scholar
  12. Clarke CA, Glaser SL, Uratsu CS, Selby JV, Kushi LH, Herrinton LJ (2006) Recent declines in hormone therapy utilization and breast cancer incidence: clinical and population-based evidence. J Clin Oncol 24:e49–50PubMedCrossRefGoogle Scholar
  13. Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMedGoogle Scholar
  14. Colditz GA, Egan KM, Stampfer MJ (1993) Hormone replacement therapy and risk of breast cancer: results from epidemiologic studies. Am J Obstet Gynecol 168:1473–1480PubMedGoogle Scholar
  15. Coste A, Antal MC, Chan S, Kastner P, Mark M, O'Malley BW, Auwerx J (2006) Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J 25:2453–2464PubMedCrossRefGoogle Scholar
  16. Culig Z, Klocker H, Bartsch G, Hobisch A (2002) Androgen receptors in prostate cancer. Endocr Relat Cancer 9:155–170PubMedCrossRefGoogle Scholar
  17. Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK (1995) Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol 9:691–705PubMedCrossRefGoogle Scholar
  18. Duong BN, Elliott S, Frigo DE, Melnik LI, Vanhoy L, Tomchuck S, Lebeau HP, David O, Beckman BS, Alam J, Bratton MR, McLachlan JA, Burow ME (2006) AKT regulation of estrogen receptor-beta transcriptional activity in breast cancer. Cancer Res 66:8373–8381PubMedCrossRefGoogle Scholar
  19. Duret L, Gasteiger E, Perriere G (1996) LALNVIEW: a graphical viewer for pairwise sequence alignments. Comput Appl Biosci 12:507–510PubMedGoogle Scholar
  20. Fernandez-Valdivia R, Mukherjee A, Mulac-Jericevic B, Conneely OM, DeMayo FJ, Amato P, Lydon JP (2005) Revealing progesterone's role in uterine and mammary gland biology: insights from the mouse. Semin Reprod Med 23:22–37PubMedCrossRefGoogle Scholar
  21. Frigo DE, Basu A, Nierth-Simpson EN, Weldon CB, Dugan CM, Elliott S, Collins-Burow BM, Salvo VA, Zhu Y, Melnik LI, Lopez GN, Kushner PJ, Curiel TJ, Rowan BG, McLachlan JA, Burow ME (2006) p38 mitogen-activated protein kinase stimulates estrogen-mediated transcription and proliferation through the phosphorylation and potentiation of the p160 coactivator glucocorticoid receptor-interacting protein 1. Mol Endocrinol 20:971–983PubMedCrossRefGoogle Scholar
  22. Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22:5923–5937PubMedCrossRefGoogle Scholar
  23. Gregory CW, Wilson EM, Apparao KB, Lininger RA, Meyer WR, Kowalik A, Fritz MA, Lessey BA (2002) Steroid receptor coactivator expression throughout the menstrual cycle in normal and abnormal endometrium. J Clin Endocrinol Metab 87:2960–2966PubMedCrossRefGoogle Scholar
  24. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561PubMedCrossRefGoogle Scholar
  25. Han SJ, Jeong J, Demayo FJ, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2005) Dynamic cell type specificity of SRC-1 coactivator in modulating uterine progesterone receptor function in mice. Mol Cell Biol 25:8150–8165PubMedCrossRefGoogle Scholar
  26. Han SJ, DeMayo FJ, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2006) Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol Endocrinol 20:45–55PubMedCrossRefGoogle Scholar
  27. Hofman K, Swinnen JV, Verhoeven G, Heyns W (2002) Coactivation of an endogenous progesterone receptor by TIF2 in COS-7 cells. Biochem Biophys Res Commun 295:469–474PubMedCrossRefGoogle Scholar
  28. Huang ZJ, Edery I, Rosbash M (1993) PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259–262PubMedCrossRefGoogle Scholar
  29. Ismail PM, Li J, DeMayo FJ, O'Malley BW, Lydon JP (2002) A novel lacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol Endocrinol 16:2475–2489PubMedCrossRefGoogle Scholar
  30. Ismail PM, DeMayo FJ, Amato P, Lydon JP (2004) Progesterone induction of calcitonin expression in the murine mammary gland. J Endocrinol 180:287–295PubMedCrossRefGoogle Scholar
  31. Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP, DeMayo FJ (2005) Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 146:3490–3505PubMedCrossRefGoogle Scholar
  32. Jeong JW, Kwak I, Lee KY, White LD, Wang XP, Brunicardi FC, O'Malley BW, DeMayo FJ (2006) The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol Endocrinol 20:1138–1152PubMedCrossRefGoogle Scholar
  33. Kim JH, Stallcup MR (2004) Role of the coiled-coil coactivator (CoCoA) in aryl hydrocarbon receptor-mediated transcription. J Biol Chem 279:49842–49848PubMedCrossRefGoogle Scholar
  34. Kim JH, Li H, Stallcup MR (2003) CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol Cell 12:1537–1549PubMedCrossRefGoogle Scholar
  35. Kino T, Ichijo T, Chrousos GP (2004) FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors. J Steroid Biochem Mol Biol 92:357–363PubMedCrossRefGoogle Scholar
  36. Kuang SQ, Liao L, Zhang H, Lee AV, O'Malley BW, Xu J (2004) AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res 64:1875–1885PubMedCrossRefGoogle Scholar
  37. Kuang SQ, Liao L, Wang S, Medina D, O'Malley BW, Xu J (2005) Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res 65:7993–8002PubMedGoogle Scholar
  38. Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC (2005) Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res 8:1–9Google Scholar
  39. Lee YH, Stallcup MR (2006) Interplay of Fli-I and FLAP1 for regulation of beta-catenin dependent transcription. Nucleic Acids Res 34:5052–5059PubMedCrossRefGoogle Scholar
  40. Lim H, Ma L, Ma WG, Maas RL, Dey SK (1999) Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol 13:1005–1017PubMedCrossRefGoogle Scholar
  41. Lonard DM, O'Malley BW (2005) Expanding functional diversity of the coactivators. Trends Biochem Sci 30:126–132PubMedCrossRefGoogle Scholar
  42. Lonard DM, O'Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125:411–414PubMedCrossRefGoogle Scholar
  43. Lonard DM, Tsai SY, O'Malley BW (2004) Selective estrogen receptor modulators 4-hydroxytamoxifen and raloxifene impact the stability and function of SRC-1 and SRC-3 coactivator proteins. Mol Cell Biol 24:14–24PubMedCrossRefGoogle Scholar
  44. Louet JF, Coste A, Amazit L, Tannour-Louet M, Wu RC, Tsai SY, Tsai MJ, Auwerx J, O'Malley BW (2006) Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proc Natl Acad Sci U S A 103:17868–17873PubMedCrossRefGoogle Scholar
  45. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW (1995) Mice lacking progesterone receptors exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278PubMedCrossRefGoogle Scholar
  46. Lydon JP, Ge G, Kittrell FS, Medina D, O'Malley BW (1999) Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res 59:4276–4284PubMedGoogle Scholar
  47. Mark M, Yoshida-Komiya H, Gehin M, Liao L, Tsai MJ, O'Malley BW, Chambon P, Xu J (2004) Partially redundant functions of SRC-1 and TIF2 in postnatal survival and male reproduction. Proc Natl Acad Sci U S A 101:4453–4458PubMedCrossRefGoogle Scholar
  48. McKenna NJ, O'Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474PubMedCrossRefGoogle Scholar
  49. Medina D, Kittrell FS, Shepard A, Contreras A, Rosen JM, Lydon J (2003) Hormone dependence in premalignant mammary progression. Cancer Res 63:1067–1072PubMedGoogle Scholar
  50. Modder UI, Sanyal A, Kearns AE, Sibonga JD, Nishihara E, Xu J, O'Malley BW, Ritman EL, Riggs BL, Spelsberg TC, Khosla S (2004) Effects of loss of steroid receptor coactivator-1 on the skeletal response to estrogen in mice. Endocrinology 145:913–921PubMedCrossRefGoogle Scholar
  51. Mukherjee A, Amato P, Allred DC, Fernandez-Valdivia R, Nguyen J, O'Malley BW, DeMayo FJ, Lydon JP (2006a) Steroid receptor coactivator 2 is essential for progesterone-dependent uterine function and mammary morphogenesis: insights from the mouse—implications for the human. J Steroid Biochem Mol Biol 102:22–31PubMedCrossRefGoogle Scholar
  52. Mukherjee A, Soyal SM, Fernandez-Valdivia R, Gehin M, Chambon P, Demayo FJ, Lydon JP, O'Malley BW (2006b) Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol Cell Biol 26:6571–6583PubMedCrossRefGoogle Scholar
  53. Norwitz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy. N Engl J Med 345:1400–1408PubMedCrossRefGoogle Scholar
  54. Patchev AV, Fischer D, Wolf SS, Herkenham M, Gotz F, Gehin M, Chambon P, Patchev VK, Almeida OF (2007) Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice. FASEB J 21:231–238PubMedCrossRefGoogle Scholar
  55. Pathirage N, Di Nezza LA, Salmonsen LA, Jobling T, Simpson ER, Clyne CD (2006) Expression of aromatase, estrogen receptors, and their coactivators in patients with endometrial cancer. Fertil Steril 86:469–472PubMedCrossRefGoogle Scholar
  56. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR (2002) Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci U S A 99:16701–16706PubMedCrossRefGoogle Scholar
  57. Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92:328–332PubMedCrossRefGoogle Scholar
  58. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288:321–333PubMedCrossRefGoogle Scholar
  59. Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 283:485–491PubMedCrossRefGoogle Scholar
  60. Soyal SM, Mukherjee A, Lee KY, Li J, Li H, DeMayo FJ, Lydon JP (2005) Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis 41:58–66PubMedCrossRefGoogle Scholar
  61. Takamoto N, Zhao B, Tsai SY, DeMayo FJ (2002) Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol Endocrinol 16:2338–2348PubMedCrossRefGoogle Scholar
  62. Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M, Sellers WR, Brown M (2004) High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6:263–274PubMedCrossRefGoogle Scholar
  63. Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W, Szeto D, Gleiberman A, Krones A, Pratt K, Rosenfeld R, Glass CK, Rosenfeld MG (2000) Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci U S A 97:13549–13554PubMedCrossRefGoogle Scholar
  64. Wang Z, Qi C, Krones A, Woodring P, Zhu X, Reddy JK, Evans RM, Rosenfeld MG, Hunter T (2006) Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metab 3:111–122PubMedCrossRefGoogle Scholar
  65. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O'Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925PubMedCrossRefGoogle Scholar
  66. Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97:6379–6384PubMedCrossRefGoogle Scholar
  67. Ye X, Han SJ, Tsai SY, DeMayo FJ, Xu J, Tsai MJ, O'Malley BW (2005) Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc Natl Acad Sci U S A 102:9487–9492PubMedCrossRefGoogle Scholar
  68. Ying H, Furuya F, Willingham MC, Xu J, O'Malley BW, Cheng SY (2005) Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone. Mol Cell Biol 25:7687–7695PubMedCrossRefGoogle Scholar
  69. Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H, Ittmann M, Tsai SY, Tsai MJ (2005) SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65:7976–7983PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Mukherjee
    • 1
  • P. Amato
    • 2
  • D. Craig-Allred
    • 3
  • F. J. DeMayo
    • 1
  • B. W. O'Malley
    • 1
  • J. P. Lydon
    • 1
  1. 1.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  2. 2.Department of Obstetrics and GynecologyBaylor College of MedicineHoustonUSA
  3. 3.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations