Tumorigenic Epithelial Stem Cells and Their Normal Counterparts

  • V. S. Donnenberg
  • J. D. Luketich
  • R. J. Landreneau
  • J. A. DeLoia
  • P. Basse
  • A. D. Donnenberg
Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


ABC transporters are highly conserved and represent a major protective mechanism for barrier tissues as well as adult tissue stem cells. Emerging data support the existence of a cancer stem cell that shares features of tissue stem cells, including the ability to self-renew and undergo dysregulated differentiation. Here we show that a rare population of cells coexpressing MDR transporters and stem cell markers is a common feature across therapy-naive epithelial cancers as well as normal epithelial tissue. MDR+ and MDR candidate tumor stem and progenitor populations were all capable of generating highly anaplastic transplantable human tumors in NOD/SCID. The finding that rare cells bearing stem cell markers and having intrinsic MDR expression and activity are already present within the tumorigenic compartment before treatment with cytotoxic agents is of critical importance to cancer therapy. Just as damaged normal epithelial tissues regenerate after chemotherapy by virtue of highly protected resting tissue stem cells, the existence of malignant counterparts in therapy-naive epithelial cancers suggests a common mechanism by which normal and tumor stem cells protect themselves against toxic injury.


Cancer Stem Cell Stem Cell Marker Normal Lung Tissue Multiple Drug Resistance Epithelial Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by Grants BC032981 and BC044784 from the Department of Defense, the Hillman Foundation, and The Glimmer of Hope Foundation. Vera S. Donnenberg is the recipient of a Department of Defense Era of Hope Scholar Award.


  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefPubMedGoogle Scholar
  2. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47CrossRefPubMedGoogle Scholar
  3. Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci USA 100(1):11830–11835CrossRefPubMedGoogle Scholar
  4. Arai F, Hirao A, Suda T (2005) Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 15:75–79CrossRefPubMedGoogle Scholar
  5. Bertoncello I, Williams B (2004) Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining. In: Hawley TS, Hawley RG (eds) Methods in molecular biology: flow cytometry protocols, 2nd edn. Humana Press, Totowa, NJGoogle Scholar
  6. Biedler JL, Riehm H (1970) Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 30:1174–1184PubMedGoogle Scholar
  7. Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66:85–94CrossRefPubMedGoogle Scholar
  8. Chen GK, Lacayo NJ, Duran GE, Wang Y, Bangs CD, Rea S, Kovacs M, Cherry AM, Brown JM, Sikic BI (2002) Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer 34:372–383CrossRefPubMedGoogle Scholar
  9. Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H (2005) The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146:3985–3998CrossRefPubMedGoogle Scholar
  10. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951CrossRefPubMedGoogle Scholar
  11. Dick JE (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci USA 100:3547–3549CrossRefPubMedGoogle Scholar
  12. Dick JE, Lapidot T (2005) Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 82:389–396CrossRefPubMedGoogle Scholar
  13. Donnenberg VS, Donnenberg AD (2003) Identification, rare-event detection and analysis of dendritic cell subsets in broncho-alveolar lavage fluid and peripheral blood by flow cytometry. Front Biosci 8:1175–1180CrossRefGoogle Scholar
  14. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877CrossRefPubMedGoogle Scholar
  15. Elder EM, Whiteside TL (1992) Processing of tumors for vaccine and/or tumor infiltrating lymphocytes. In: Rose NR, Conway de Macario E, Fahey JL, Friedman H, Penn GM (eds) Manual of clinical laboratory immunology, 4th edn. American Society for Microbiology, Washington, DC, pp 817–819Google Scholar
  16. Fiala S (1968) The cancer cell as a stem cell unable to differentiate. A theory of carcinogenesis. Neoplasma 15:607–622PubMedGoogle Scholar
  17. Giangreco A, Shen H, Reynolds SD, Stripp BR (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286:L624–L630CrossRefPubMedGoogle Scholar
  18. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMedGoogle Scholar
  19. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463CrossRefPubMedGoogle Scholar
  20. He DN, Qin H, Liao L, Li N, Zhu WM, Yu BJ, Wu X, Zhao RC, Li JS (2005) Small intestinal organoid-derived SP cells contribute to repair of irradiation-induced skin injury. Stem Cells Dev 14:285–291CrossRefPubMedGoogle Scholar
  21. Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237CrossRefPubMedGoogle Scholar
  22. Ling V, Thompson LH (1974) Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83:103–116CrossRefPubMedGoogle Scholar
  23. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491–497CrossRefPubMedGoogle Scholar
  24. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12:296–300CrossRefPubMedGoogle Scholar
  25. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 3:e331CrossRefPubMedGoogle Scholar
  26. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  27. Riou L, Bastos H, Lassalle B, Coureuil M, Testart J, Boussin FD, Allemand I, Fouchet P (2005) The telomerase activity of adult mouse testis resides in the spermatogonial alpha6-integrin-positive side population enriched in germinal stem cells. Endocrinology 146:3926–3932CrossRefPubMedGoogle Scholar
  28. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  29. Udomsakdi C, Eaves CJ, Sutherland HJ, Lansdorp PM (1991) Separation of functionally distinct subpopulations of primitive human hematopoietic cells using rhodamine-123. Exp Hematol 19:338–342PubMedGoogle Scholar
  30. Wang YC, Juric D, Francisco B, Yu RX, Duran GE, Chen GK, Sikic BI (2006) Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer 45:365–374CrossRefPubMedGoogle Scholar
  31. Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353:831–837CrossRefPubMedGoogle Scholar
  32. Webb M, Raphael CL, Asbahr H, Erber WN, Meyer BF (1996) The detection of rhodamine 123 efflux at low levels of drug resistance. Br J Haematol 93:650–655CrossRefPubMedGoogle Scholar
  33. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890CrossRefPubMedGoogle Scholar
  34. Yano S, Ito Y, Fujimoto M, Hamazaki TS, Tamaki K, Okochi H (2005) Characterization and localization of side population cells in mouse skin. Stem Cells 23:834–841CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • V. S. Donnenberg
    • 1
  • J. D. Luketich
    • 1
  • R. J. Landreneau
    • 1
  • J. A. DeLoia
    • 1
  • P. Basse
    • 1
  • A. D. Donnenberg
    • 1
  1. 1.Hillman Cancer Research PavilionPittsburghUSA

Personalised recommendations