The Hedgehog Signaling Network, Mammary Stem Cells, and Breast Cancer: Connections and Controversies

  • M. T. Lewis
  • A. P. Visbal
Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


Several signal transduction networks have been implicated in the regulation of mammary epithelial stem cell self-renewal and maintenance (Kalirai and Clarke 2006; Liu et al. 2005). These signaling networks include those of the Wnt, Notch, TGFβ, EGF, FGF, IGF, and most recently, the Hedgehog (Hh) families of secreted ligands. However, we currently know very little about the cellular and molecular mechanisms by which these signaling pathways function to regulate normal epithelial stem/progenitor cells. What is clear is that the regulatory signaling networks thought to control normal stem/progenitor cell self-renewal and maintenance are, with the current sole exception of the hedgehog network, well-documented to have contributory roles in mammary cancer development and disease progression when misregulated. In this review, genetic regulation of mammary gland development by hedgehog network genes is outlined, highlighting a developing controversy as to whether activated hedgehog signaling regulates normal regenerative mammary epithelial stem cells or, indeed, whether activated hedgehog signaling functions at all in ductal development. In addition, the question of whether inappropriate hedgehog network activation influences breast cancer development is addressed, with emphasis on the prospects for using hedgehog signaling antagonists clinically for breast cancer treatment or prevention.


Mammary Gland Hedgehog Signaling Mammary Gland Development Regenerative Stem Cell Gli2 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274--7282PubMedCrossRefGoogle Scholar
  2. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43--47PubMedCrossRefGoogle Scholar
  3. Aruga J (2004) The role of Zic genes in neural development. Mol Cell Neurosci 26:205--221PubMedCrossRefGoogle Scholar
  4. Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP, Epstein EH Jr (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5:1285--1291PubMedCrossRefGoogle Scholar
  5. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324--331PubMedCrossRefGoogle Scholar
  6. Behbod F, Rosen JM (2005) Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26:703--711PubMedCrossRefGoogle Scholar
  7. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559--1561PubMedCrossRefGoogle Scholar
  8. Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6:298--304PubMedCrossRefGoogle Scholar
  9. Boras-Granic K, Chang H, Grosschedl R, Hamel PA (2006) Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 295:219--231PubMedCrossRefGoogle Scholar
  10. Brewster R, Lee J, Ruiz i Altaba A (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393:579--583PubMedCrossRefGoogle Scholar
  11. Briscoe J, Therond P (2005) Hedgehog signaling: from the Drosophila cuticle to anti-cancer drugs. Dev Cell 8:143--151PubMedCrossRefGoogle Scholar
  12. Chang-Claude J, Dunning A, Schnitzbauer U, Galmbacher P, Tee L, Wjst M, Chalmers J, Zemzoum I, Harbeck N, Pharoah PD, Hahn H (2003) The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk. Int J Cancer 103:779--783PubMedCrossRefGoogle Scholar
  13. Chao MV (2003) Dependence receptors: what is the mechanism? Sci STKE 2003:PE38PubMedCrossRefGoogle Scholar
  14. Chen JK, Taipale J, Cooper MK, Beachy PA (2002a) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743--2748PubMedCrossRefGoogle Scholar
  15. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002b) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99:14071--14076PubMedCrossRefGoogle Scholar
  16. Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ (2004) Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306:2257--2260PubMedCrossRefGoogle Scholar
  17. Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet 123A:5--28PubMedCrossRefGoogle Scholar
  18. Daniel CW, Silberstein GB (1987) Developmental biology of the mammary gland. In: Neville MC, Daniel CW (eds) The mammary gland. Plenum, New YorkGoogle Scholar
  19. Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4:3--8PubMedCrossRefGoogle Scholar
  20. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr (1968) The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA 61:53--60PubMedCrossRefGoogle Scholar
  21. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275--284PubMedCrossRefGoogle Scholar
  22. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Gαi-mediated signaling in frog melanophores. J Biol Chem 275:26322--26327PubMedCrossRefGoogle Scholar
  23. DeOme KB, Faulkin LJ Jr, Bern H (1958) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515--520Google Scholar
  24. Detmer K, Thompson AJ, Garner RE, Walker AN, Gaffield W, Dannawi H (2005) Hedgehog signaling and cell cycle control in differentiating erythroid progenitors. Blood Cells Mol Dis 34:60--70PubMedCrossRefGoogle Scholar
  25. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736--4745PubMedGoogle Scholar
  26. Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10:75--86PubMedCrossRefGoogle Scholar
  27. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253--1270PubMedCrossRefGoogle Scholar
  28. Ellis T, Smyth I, Riley E, Graham S, Elliot K, Narang M, Kay GF, Wicking C, Wainwright B (2003) Patched 1 conditional null allele in mice. Genesis 36:158--161PubMedCrossRefGoogle Scholar
  29. Endo H, Utani A, Shinkai H (2002) Desert hedgehog signalling pathway is involved in the proliferation of a malignant peripheral nerve sheath tumour-derived cell line from neurofibromatosis type 1. Br J Dermatol 147:821--822PubMedCrossRefGoogle Scholar
  30. Evangelista M, Tian H, de Sauvage FJ (2006) The hedgehog signaling pathway in cancer. Clin Cancer Res 12:5924--5928PubMedCrossRefGoogle Scholar
  31. Faulkin LJ Jr, Deome KB (1960) Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J Natl Cancer Inst 24:953--969PubMedGoogle Scholar
  32. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, Dunbar M, Philbrick W, Wysolmerski J (2001) Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 128:513--525PubMedGoogle Scholar
  33. Fremion F, Astier M, Zaffran S, Guillen A, Homburger V, Semeriva M (1999) The heterotrimeric protein Go is required for the formation of heart epithelium in Drosophila. J Cell Biol 145:1063--1076PubMedCrossRefGoogle Scholar
  34. Gallego MI, Beachy PA, Hennighausen L, Robinson GW (2002) Differential requirements for shh in mammary tissue and hair follicle morphogenesis. Dev Biol 249:131--139PubMedCrossRefGoogle Scholar
  35. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109--1113PubMedCrossRefGoogle Scholar
  36. Gouon-Evans V, Lin EY, Pollard JW (2002) Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 4:155--164PubMedCrossRefGoogle Scholar
  37. Guerrero I, Ruiz i Altaba A (2003) Development. Longing for ligand: hedgehog, patched, and cell death. Science 301:774--776PubMedCrossRefGoogle Scholar
  38. Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4:619--622PubMedCrossRefGoogle Scholar
  39. Hammerschmidt M, McMahon AP (1998) The effect of pertussis toxin on zebrafish development: a possible role for inhibitory G-proteins in hedgehog signaling. Dev Biol 194:166--171PubMedCrossRefGoogle Scholar
  40. Hatsell SJ, Cowin P (2006) Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133:3661--3670PubMedCrossRefGoogle Scholar
  41. Hooper JE, Scott MP (2005) Communicating with hedgehogs. Nat Rev Mol Cell Biol 6:306--317PubMedCrossRefGoogle Scholar
  42. Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D, Liu J, Michael LE, Glick A, Dlugosz AA (2005) Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 19:214--223PubMedCrossRefGoogle Scholar
  43. Kalirai H, Clarke RB (2006) Human breast epithelial stem cells and their regulation. J Pathol 208:7--16PubMedCrossRefGoogle Scholar
  44. Kasai K, Takahashi M, Osumi N, Sinnarajah S, Takeo T, Ikeda H, Kehrl JH, Itoh G, Arnheiter H (2004) The G12 family of heterotrimeric G proteins and Rho GTPase mediate Sonic hedgehog signalling. Genes Cells 9:49--58PubMedCrossRefGoogle Scholar
  45. Kasper M, Regl G, Frischauf AM, Aberger F (2006) GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437--445PubMedCrossRefGoogle Scholar
  46. Kimata K, Sakakura T, Inaguma Y, Kato M, Nishizuka Y (1985) Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morphol 89:243--257PubMedGoogle Scholar
  47. Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404--3412PubMedCrossRefGoogle Scholar
  48. Krishnan V, Elberg G, Tsai MJ, Tsai SY (1997a) Identification of a novel sonic hedgehog response element in the chicken ovalbumin upstream promoter-transcription factor II promoter. Mol Endocrinol 11:1458--1466PubMedCrossRefGoogle Scholar
  49. Krishnan V, Pereira FA, Qiu Y, Chen CH, Beachy PA, Tsai SY, Tsai MJ (1997b) Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 278:1947--1950PubMedCrossRefGoogle Scholar
  50. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071--6074PubMedCrossRefGoogle Scholar
  51. Lamont RE, Childs S (2006) MAPping out arteries and veins. Sci STKE 2006:PE39PubMedCrossRefGoogle Scholar
  52. Lee K, Jeong J, Tsai MJ, Tsai S, Lydon JP, Demayo FJ (2006a) Molecular mechanisms involved in progesterone receptor regulation of uterine function. J Steroid Biochem Mol Biol 102:41--50PubMedCrossRefGoogle Scholar
  53. Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ (2006b) Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 66:6964--6971PubMedCrossRefGoogle Scholar
  54. Lewis MT (2001) Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 6:53--66PubMedCrossRefGoogle Scholar
  55. Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9:165--181PubMedCrossRefGoogle Scholar
  56. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP, Daniel CW (1999) Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 126:5181--5193PubMedGoogle Scholar
  57. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C, Daniel CW (2001) The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 238:133--144PubMedCrossRefGoogle Scholar
  58. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7:86--95PubMedCrossRefGoogle Scholar
  59. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063--6071PubMedCrossRefGoogle Scholar
  60. Long F, Zhang XM, Karp S, Yang Y, McMahon AP (2001) Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128:5099--5108PubMedGoogle Scholar
  61. MacLean HE, Kronenberg HM (2005) Localization of Indian hedgehog and PTH/PTHrP receptor expression in relation to chondrocyte proliferation during mouse bone development. Dev Growth Differ 47:59--63PubMedCrossRefGoogle Scholar
  62. Masdeu C, Faure H, Coulombe J, Schoenfelder A, Mann A, Brabet I, Pin JP, Traiffort E, Ruat M (2006) Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem Biophys Res Commun 349:471--479PubMedCrossRefGoogle Scholar
  63. Meloni AR, Fralish GB, Kelly P, Salahpour A, Chen JK, Wechsler-Reya RJ, Lefkowitz RJ, Caron MG (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26:7550--7560PubMedCrossRefGoogle Scholar
  64. Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA (2003) Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 264:153--165PubMedCrossRefGoogle Scholar
  65. Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, Hui CC (2003) Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17:282--294PubMedCrossRefGoogle Scholar
  66. Mimeault M, Moore E, Moniaux N, Henichart JP, Depreux P, Lin MF, Batra SK (2006) Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 118:1022--1031PubMedCrossRefGoogle Scholar
  67. Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16:700--707PubMedCrossRefGoogle Scholar
  68. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432--1437PubMedCrossRefGoogle Scholar
  69. Moraes CR, Zhang X, Harrington N, Fung JY, Wu MF, Hilsenbeck SG, Allred DC, Lewis MT (2007) Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 134:1231--1242PubMedCrossRefGoogle Scholar
  70. Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP, Welch DR, Lobo-Ruppert SM, Ruppert JM, Johnson MR, Frost AR (2006) Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5:674--683PubMedCrossRefGoogle Scholar
  71. Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, Zaks TZ, Weber BL (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:R1186--R1198PubMedCrossRefGoogle Scholar
  72. Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R, Crackower MA, Hui CC (2006) Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 26:6609--6622PubMedCrossRefGoogle Scholar
  73. Nusse R (2003) Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130:5297--5305PubMedCrossRefGoogle Scholar
  74. Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335--344PubMedCrossRefGoogle Scholar
  75. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302--305PubMedCrossRefGoogle Scholar
  76. Pazzaglia S, Mancuso M, Tanori M, Atkinson MJ, Merola P, Rebessi S, Di Majo V, Covelli V, Hahn H, Saran A (2004) Modulation of patched-associated susceptibility to radiation induced tumorigenesis by genetic background. Cancer Res 64:3798--3806PubMedCrossRefGoogle Scholar
  77. Reiter E, Lefkowitz RJ (2006) GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159--165PubMedCrossRefGoogle Scholar
  78. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105--111PubMedCrossRefGoogle Scholar
  79. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103:12607--12612PubMedCrossRefGoogle Scholar
  80. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/(-p53-)/-) mice. Cancer Cell 6:229--240PubMedCrossRefGoogle Scholar
  81. Sakakura T (1987) Mammary embryogenesis. In: Neville MC, Daniel CW (eds) The mammary gland. Plenum, New YorkGoogle Scholar
  82. Sakakura T, Nishizuka Y, Dawe CJ (1976) Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194:1439--1441PubMedCrossRefGoogle Scholar
  83. Sakakura T, Sakagami Y, Nishizuka Y (1979) Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev Biol 72:201--210PubMedCrossRefGoogle Scholar
  84. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24:391--395PubMedCrossRefGoogle Scholar
  85. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1--28PubMedCrossRefGoogle Scholar
  86. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84--88PubMedCrossRefGoogle Scholar
  87. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268--274PubMedCrossRefGoogle Scholar
  88. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8:R7PubMedCrossRefGoogle Scholar
  89. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832--844PubMedCrossRefGoogle Scholar
  90. Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39:21--31PubMedCrossRefGoogle Scholar
  91. Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681--687PubMedCrossRefGoogle Scholar
  92. St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8:1058--1068PubMedCrossRefGoogle Scholar
  93. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072--2086PubMedCrossRefGoogle Scholar
  94. Sterling JA, Oyajobi BO, Grubbs B, Padalecki SS, Munoz SA, Gupta A, Story B, Zhao M, Mundy GR (2006) The hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells. Cancer Res 66:7548--7553PubMedCrossRefGoogle Scholar
  95. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993--997PubMedGoogle Scholar
  96. Thibert C, Teillet MA, Lapointe F, Mazelin L, Le Douarin NM, Mehlen P (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301:843--846PubMedCrossRefGoogle Scholar
  97. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1--17PubMedCrossRefGoogle Scholar
  98. Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S (2004) Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn 229:349--356PubMedCrossRefGoogle Scholar
  99. Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, Rice R, Spencer-Dene B, Mailleux AA, Rice DP, Thiery JP, Bellusci S (2006) Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133:2325--2335PubMedCrossRefGoogle Scholar
  100. Vorechovsky I, Benediktsson KP, Toftgard R (1999) The patched/hedgehog/smoothened signalling pathway in human breast cancer: no evidence for H133Y SHH, PTCH and SMO mutations. Eur J Cancer 35:711--713PubMedCrossRefGoogle Scholar
  101. Wallis D, Muenke M (2000) Mutations in holoprosencephaly. Hum Mutat 16:99--108PubMedCrossRefGoogle Scholar
  102. Welm AL, Kim S, Welm BE, Bishop JM (2005) MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci USA 102:4324--4329PubMedCrossRefGoogle Scholar
  103. Welm B, Behbod F, Goodell MA, Rosen JM (2003) Isolation and characterization of functional mammary gland stem cells. Cell Prolif 36(Suppl:1):17--32PubMedCrossRefGoogle Scholar
  104. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66:1883--1890; discussion 1895--1896PubMedCrossRefGoogle Scholar
  105. Wilbanks AM, Fralish GB, Kirby ML, Barak LS, Li YX, Caron MG (2004)3 β-Arrestin 2 regulates zebrafish development through the hedgehog signaling pathway. Science 306:2264--2267PubMedCrossRefGoogle Scholar
  106. Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C, Gatchalian C, Porter JA, Rubin LL, Wang FY (2003) Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100:4616--4621PubMedCrossRefGoogle Scholar
  107. Williams JM, Daniel CW (1983) Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 97:274--290PubMedCrossRefGoogle Scholar
  108. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG, Warren RS, Chen LC, Scott MP, Epstein EH Jr (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57:2369--2372PubMedGoogle Scholar
  109. Zeps N, Dawkins HJ, Papadimitriou JM, Redmond SL, Walters MI (1996) Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res 286:525--536PubMedCrossRefGoogle Scholar
  110. Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:781--792PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Baylor Breast Center and Department of Molecular and Cellular BiologyBaylor College of MedicineHouston, TXUSA

Personalised recommendations