Skip to main content

Breast Stem Cells and Cancer

  • Conference paper
  • First Online:
Cancer Stem Cells

Part of the book series: Springer Series on Biofilms ((SCHERING FOUND,volume 2006/5))

Abstract

Recent results have increased our understanding of normal stem cells and the signalling pathways which regulate them during the development of the mammary gland. Tumours in many tissues are now thought to develop from dysregulated stem cells and depend on activated stem cell self-renewal pathways such as Notch for their tumourigenic capacity. These cancer stem cells are recognised by specific cell surface proteins that they express and their capacity to grow tumours in vivo or spheres in vitro. We have described human breast DCIS mammospheres grown from cancer stem cells and demonstrated their dependence on the EGF and Notch receptor pathways. Stem cell self-renewal pathways such as these may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  • Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5:R1–R8

    Article  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  • Boulanger CA, Wagner KU, Smith GH (2005) Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 24:552–560

    Article  CAS  PubMed  Google Scholar 

  • Chan KC, Knox WF, Gee JM, Morris J, Nicholson RI, Potten CS, Bundred NJ (2002) Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res 62:122–128

    CAS  PubMed  Google Scholar 

  • Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456

    Article  CAS  PubMed  Google Scholar 

  • Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297:444–460

    Article  CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  • Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4:3–8

    Article  CAS  PubMed  Google Scholar 

  • Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr (1968) The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA 61:53–60

    Article  CAS  PubMed  Google Scholar 

  • Deome KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    CAS  PubMed  Google Scholar 

  • Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10:75–86

    Article  PubMed  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003a) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  CAS  PubMed  Google Scholar 

  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003b) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl:1):59–72

    Article  CAS  PubMed  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    Article  CAS  PubMed  Google Scholar 

  • Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH (2005) Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am J Pathol 167:409–417

    Article  CAS  PubMed  Google Scholar 

  • Farnie G, et al. (2007) Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and EGF receptor signaling pathways. J Natl Cancer Inst (in press)

    Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Gardner WU (1967) Transplantability and life span of mammary gland during serial transplantation in mice. Nature 213:193–194

    Article  CAS  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  • Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, Watson CJ (2003) A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130:3459–3468

    Article  CAS  PubMed  Google Scholar 

  • Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104:181–186

    Article  CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858

    Article  CAS  PubMed  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  CAS  PubMed  Google Scholar 

  • Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci USA 100:3311–3314

    Article  CAS  PubMed  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  • Ormerod EJ, Rudland PS (1986) Regeneration of mammary glands in vivo from isolated mammary ducts. J Embryol Exp Morphol 96:229–243

    CAS  PubMed  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  CAS  PubMed  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  CAS  PubMed  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  CAS  PubMed  Google Scholar 

  • Richert MM, Schwertfeger KL, Ryder JW, Anderson SM (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241

    Article  CAS  PubMed  Google Scholar 

  • Rudland PS, Barraclough R, Fernig DG, Smith JA (1998) Growth and differentiation of the normal mammary gland and its tumours. Biochem Soc Symp 63:1–20

    CAS  PubMed  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    CAS  PubMed  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS (1996) Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56:402–404

    CAS  PubMed  Google Scholar 

  • Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    Article  CAS  PubMed  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Clarke .

Editor information

O.D. Wiestler B. Haendler D. Mumberg

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Farnie, G., Clarke, R.B. (2007). Breast Stem Cells and Cancer. In: Wiestler, O., Haendler, B., Mumberg, D. (eds) Cancer Stem Cells. Springer Series on Biofilms, vol 2006/5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_049

Download citation

  • DOI: https://doi.org/10.1007/2789_2007_049

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70852-0

  • Online ISBN: 978-3-540-70853-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics