Breast Stem Cells and Cancer

Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


Recent results have increased our understanding of normal stem cells and the signalling pathways which regulate them during the development of the mammary gland. Tumours in many tissues are now thought to develop from dysregulated stem cells and depend on activated stem cell self-renewal pathways such as Notch for their tumourigenic capacity. These cancer stem cells are recognised by specific cell surface proteins that they express and their capacity to grow tumours in vivo or spheres in vitro. We have described human breast DCIS mammospheres grown from cancer stem cells and demonstrated their dependence on the EGF and Notch receptor pathways. Stem cell self-renewal pathways such as these may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.


Cancer Stem Cell Acute Myeloid Leukaemia Side Population Normal Stem Cell Mammary Stem Cell 


  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefPubMedGoogle Scholar
  2. Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5:R1–R8CrossRefPubMedGoogle Scholar
  3. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  5. Boulanger CA, Wagner KU, Smith GH (2005) Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 24:552–560CrossRefPubMedGoogle Scholar
  6. Chan KC, Knox WF, Gee JM, Morris J, Nicholson RI, Potten CS, Bundred NJ (2002) Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res 62:122–128PubMedGoogle Scholar
  7. Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456CrossRefPubMedGoogle Scholar
  8. Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297:444–460CrossRefPubMedGoogle Scholar
  9. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951CrossRefPubMedGoogle Scholar
  10. Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4:3–8CrossRefPubMedGoogle Scholar
  11. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr (1968) The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA 61:53–60CrossRefPubMedGoogle Scholar
  12. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520PubMedGoogle Scholar
  13. Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10:75–86CrossRefPubMedGoogle Scholar
  14. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003a) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270CrossRefPubMedGoogle Scholar
  15. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003b) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl:1):59–72CrossRefPubMedGoogle Scholar
  16. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615CrossRefPubMedGoogle Scholar
  17. Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH (2005) Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am J Pathol 167:409–417CrossRefPubMedGoogle Scholar
  18. Farnie G, et al. (2007) Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and EGF receptor signaling pathways. J Natl Cancer Inst (in press)Google Scholar
  19. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345CrossRefPubMedGoogle Scholar
  20. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183CrossRefPubMedGoogle Scholar
  21. Hoshino K, Gardner WU (1967) Transplantability and life span of mammary gland during serial transplantation in mice. Nature 213:193–194CrossRefPubMedGoogle Scholar
  22. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206CrossRefPubMedGoogle Scholar
  23. Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, Watson CJ (2003) A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130:3459–3468CrossRefPubMedGoogle Scholar
  24. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104:181–186CrossRefPubMedGoogle Scholar
  25. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037CrossRefPubMedGoogle Scholar
  26. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858CrossRefPubMedGoogle Scholar
  27. Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163CrossRefPubMedGoogle Scholar
  28. Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298CrossRefPubMedGoogle Scholar
  29. Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci USA 100:3311–3314CrossRefPubMedGoogle Scholar
  30. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110CrossRefPubMedGoogle Scholar
  31. Ormerod EJ, Rudland PS (1986) Regeneration of mammary glands in vivo from isolated mammary ducts. J Embryol Exp Morphol 96:229–243PubMedGoogle Scholar
  32. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMedGoogle Scholar
  33. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219CrossRefPubMedGoogle Scholar
  34. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785CrossRefPubMedGoogle Scholar
  35. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511CrossRefPubMedGoogle Scholar
  36. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537CrossRefPubMedGoogle Scholar
  37. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  38. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115CrossRefPubMedGoogle Scholar
  39. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241CrossRefPubMedGoogle Scholar
  40. Rudland PS, Barraclough R, Fernig DG, Smith JA (1998) Growth and differentiation of the normal mammary gland and its tumours. Biochem Soc Symp 63:1–20PubMedGoogle Scholar
  41. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88CrossRefPubMedGoogle Scholar
  42. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  43. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  44. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMedGoogle Scholar
  45. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525CrossRefPubMedGoogle Scholar
  46. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS (1996) Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56:402–404PubMedGoogle Scholar
  47. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501CrossRefPubMedGoogle Scholar
  48. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168CrossRefPubMedGoogle Scholar
  49. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56CrossRefPubMedGoogle Scholar
  50. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Breast Biology Group, School of Cancer and Imaging Sciences, Faculty of Medicine and Human SciencesUniversity of ManchesterManchesterUK

Personalised recommendations