Bone Marrow Niche and Leukemia

  • A.  D. Ho
  • W. Wagner
Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


Mounting evidence indicates that human cancers may originate from malignant transformation of stem cells. The most convincing proof is found in acute myeloid leukemia, where only a small subset of slowly dividing cells was able to induce transplantable acute myeloid leukemia. Normal hematopoietic stem cells (HSC) are characterized by their unlimited ability to self-renew, give rise to a multitude of cells that exhibit more differentiated features, and show slow division kinetics. Using human HSC and mesenchymal stromal cells (MSC) as models, we and others have demonstrated the vital role of the cellular niche in maintaining the self-renewing capacity, that is, “stemness” of HSC. Without direct contact with the cellular niche, HSC tend to differentiate and lose their stemness. Similar to their normal counterparts, leukemia stem cells divide slowly and maintain their self-renewal capacity through interaction with the niche. As a consequence, they are resistant to conventional chemotherapy strategies that target rapidly dividing cells. Thus it is of utmost importance to understand the interaction between cellular niche and normal HSC as well as between leukemia stem cells and the niche to provide a basis for more efficient treatment strategies.


Hematopoietic Stem Cell Mesenchymal Stromal Cell Stem Cell Niche Asymmetric Division Leukemia Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989CrossRefPubMedGoogle Scholar
  2. Becker A, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452CrossRefPubMedGoogle Scholar
  3. Berardi AC, Wang A, Levina JD, Lopez P, Scadden DT (1995) Functional isolation and characterization of human hematopoietic stem cells. Science 267:104–108CrossRefPubMedGoogle Scholar
  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  5. Calvi LM, Adams GB, Weibrecht KM, et al (2003) Osteoblastic cells regulate the hematopoietic progenitor cell niche. Nature 425:841–846CrossRefPubMedGoogle Scholar
  6. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309:886–887CrossRefPubMedGoogle Scholar
  7. Danet GH, Luongo JL, Butler G, et al (2002) C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci USA 99:10441–10445CrossRefPubMedGoogle Scholar
  8. Francis K, Ramakrishna R, Holloway W, Palsson BO (1998) Two new pseudopod morphologies displayed by the human hematopoietic KG1a progenitor cell line and by primary human CD34+ cells. Blood 92:3616–3623PubMedGoogle Scholar
  9. Francis K, Palsson B, Donahue J, Fong S, Carrier E (2002) Murine Sca-1+/Lin− cells and human KG1a cells exhibit multiple pseudopod morphologies during migration. Exp Hematol 30:460–463CrossRefPubMedGoogle Scholar
  10. Frimberger AE, McAulife CI, Werme KA, Tuft RA, Fogarty KE, Benoit BO, Dooner MS, Quesenberry PJ (2001) The fleet feet of haematopoietic stem cells: rapid motility, interaction and proteopodia. Br J Haematol 112:644–654CrossRefPubMedGoogle Scholar
  11. Frühauf S, Srbic K, Seggewiss R, Topaly J, Ho AD (2002) Functional characterization of podia formation in normal and malignant hematopoietic cells. J Leukoc Biol 71:425–432Google Scholar
  12. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021CrossRefPubMedGoogle Scholar
  13. Giebel B, Zhang T, Beckmann J, Spanholtz J, Wernet P, Ho AD, Punzel M (2006) Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 107:2146–2152CrossRefPubMedGoogle Scholar
  14. Gottschling S, Saffrich R, Seckinger A, Krause U, Horsch K, Miesala K, Ho AD (2007) Human mesenchymal stroma cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a β1-integrin-dependent mechanism. Stem Cells 25:798–806CrossRefPubMedGoogle Scholar
  15. Ho AD (2005) Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 33:1–8CrossRefPubMedGoogle Scholar
  16. Ho AD, Punzel M (2003) Hematopoietic stem cells: can old cells learn new tricks? J Leukoc Biol 73:547–555CrossRefPubMedGoogle Scholar
  17. Holloway W, Martinez AR, OH DJ, Francis K, Ramakrishna R, Palsson BO (1999) Key adhesion molecules are present on long podia extended by hematopoietic cells. Cytometry 37:171–177Google Scholar
  18. Huang S, Law P, Francis K, Palsson BO, Ho AD (1999) Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecule. Blood 94:2595–2604PubMedGoogle Scholar
  19. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321CrossRefPubMedGoogle Scholar
  20. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604CrossRefPubMedGoogle Scholar
  21. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174CrossRefPubMedGoogle Scholar
  22. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648CrossRefPubMedGoogle Scholar
  23. Metcalf D (1998) Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 29:345Google Scholar
  24. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849CrossRefPubMedGoogle Scholar
  25. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451CrossRefPubMedGoogle Scholar
  26. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMedGoogle Scholar
  27. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S (2005) Pierotti MA, Daidone MG. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511CrossRefPubMedGoogle Scholar
  28. Punzel M, Zhang T, Liu D, Eckstein V, Ho AD (2002) Functional analysis of initial cell divisions defines the subsequent fate of individual human CD34+CD38− cells. Exp Hematol 30:464–472CrossRefPubMedGoogle Scholar
  29. Punzel M, Liu D, Zhang T, Eckstein V, Miesala K, Ho AD (2003) The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment. Exp Hematol 31:339–347CrossRefPubMedGoogle Scholar
  30. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600CrossRefPubMedGoogle Scholar
  31. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336CrossRefGoogle Scholar
  32. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  33. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMedGoogle Scholar
  34. Verfaillie CM (1993) Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82:2045PubMedGoogle Scholar
  35. Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD (2004) Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 104:675–686CrossRefPubMedGoogle Scholar
  36. Wagner W, Saffrich R, Wirkner U, Eckstein V, Blake J, Ansorge A, Schwager C, Wein F, Miesala K, Ansorge W, Ho AD (2005) Hematopoietic progenitor cells and cellular microenvironment—behavioral and molecular changes upon interaction. Stem Cells 23:1180–1191CrossRefPubMedGoogle Scholar
  37. Wagner W, Wein F, Roderburg C, Saffrich R, Faber A, Krause U, Schubert M, Benes V, Eckstein V, Maul H, Ho AD (2007) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp. Hematol. 35:314–325CrossRefPubMedGoogle Scholar
  38. Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446CrossRefPubMedGoogle Scholar
  39. Wuchter P, Boda J, Grund C, Kuhn C, Krause U, Eckstein V, Gottschling S, Franke WW, Ho AD (2003) A novel type of cell–cell connections in mesenchymal stem cells. Blood 102:1309Google Scholar
  40. Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Ho AD, Franke WW (2007) Processus and recessus adhäerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Research 328:499–514CrossRefPubMedGoogle Scholar
  41. Yamashita QM, Jones DL, Fuller MG (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science301:1447–1550CrossRefGoogle Scholar
  42. Young JC, Varma A, DiGiusto D, Backer MP (1996) Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture. Blood 87:545PubMedGoogle Scholar
  43. Zhang J, Niu C, Ye L, et al (2003) Identification of hematopoietic progenitor cells niche and control of the niche size. Nature 425:836–841CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Medicine VUniversity of HeidelbergHeidelbergGermany

Personalised recommendations