Advertisement

The Migrating Cancer Stem Cells Model - A Conceptual Explanation of Malignant Tumour Progression

  • A. Jung
  • T. Brabletz
  • T. Kirchner
Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)

Abstract

Human colorectal cancer is one of the best, if not the best, understood tumour diseases. These tumours develop stepwise via an adenoma-carcinoma sequence. The steps in this process can easily be discriminated with light microscopy. The breakthrough in understanding carcinogenesis was the finding that mutations in tumour suppressor genes and oncogenes accumulate in parallel with these steps. This accumulation is the cause for the malignant progression of colorectal cancers, leading to highly invasive and migrating tumour cells. This concept is known as the multistep carcinogenesis model and has become the paradigm of tumour progression in general. But this model does not explain the complex, heterogeneous histology of colorectal tumours or the good differentiation of metastases, which are expected to have lost their differentiation because of the accumulation of mutations. Here, we present the model of migrating tumour stem cells, which explains these contradictions in the context of the histology of colorectal tumours. Thus colorectal tumours consist of tumour stem cells, which have recently been defined as a small CD133-positive population of tumour cells. These cells trans-differentiate into epithelial cells, which represent the main mass of the colorectal tumours. Moreover, the tumour stem cells are the active component of migration and invasion, thus conferring the malignant phenotype. Taken together, mutations confer to the tumour cells the capability to live outside of their stem cell niche and intestinal compartment. In addition, the trans-differentiation potential of the tumour cell confers plasticity to the tumour and thus contributes to the heterogeneity of colorectal cancers.

Keywords

Colorectal Tumour Invasion Front Colorectal Carcinogenesis Tumour Stem Cell Colorectal Tumour Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barker N, Clevers H (2001) Tumor environment: a potent driving force in colorectal cancer? Trends Mol Med 7:535–537CrossRefPubMedGoogle Scholar
  2. Beiter K, Hiendlmeyer E, Brabletz T, Hlubek F, Haynl A, Knoll C, Kirchner T, Jung A (2005) β-Catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene 24:8200–8204PubMedGoogle Scholar
  3. Bienz M (2002) The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3:328–338CrossRefPubMedGoogle Scholar
  4. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320CrossRefPubMedGoogle Scholar
  5. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein β-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704PubMedGoogle Scholar
  6. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T (1999) β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155:1033–1038CrossRefPubMedGoogle Scholar
  7. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361CrossRefPubMedGoogle Scholar
  8. Brabletz T, Jung A, Kirchner T (2002) β-Catenin and the morphogenesis of colorectal cancer. Virchows Arch 441:1–11CrossRefPubMedGoogle Scholar
  9. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005a) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin. Cells Tissues Organs 179:56–65CrossRefPubMedGoogle Scholar
  10. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005b) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749CrossRefPubMedGoogle Scholar
  11. Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W (2004) Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions. Genes Dev 18:2225–2230CrossRefPubMedGoogle Scholar
  12. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480CrossRefPubMedGoogle Scholar
  13. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of β-catenin signaling, Slug, and MAPK. J Cell Biol 163:847–857CrossRefPubMedGoogle Scholar
  14. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891CrossRefPubMedGoogle Scholar
  15. Dikovskaya D, Zumbrunn J, Penman GA, Nathke IS (2001) The adenomatous polyposis coli protein: in the limelight out at the edge. Trends Cell Biol 11:378–384CrossRefPubMedGoogle Scholar
  16. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767CrossRefPubMedGoogle Scholar
  17. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1:55–67CrossRefPubMedGoogle Scholar
  18. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res 63:2658–2664PubMedGoogle Scholar
  19. Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol Cell Biol 19:5576–5587PubMedGoogle Scholar
  20. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618PubMedGoogle Scholar
  21. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  22. Harris TJ, Peifer M (2005) Decisions, decisions: β-catenin chooses between adhesion and transcription. Trends Cell Biol 15:234–237CrossRefPubMedGoogle Scholar
  23. Hase K, Shatney C, Johnson D, Trollope M, Vierra M (1993) Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum 36:627–635CrossRefPubMedGoogle Scholar
  24. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefPubMedGoogle Scholar
  25. Hiendlmeyer E, Regus S, Wassermann S, Hlubek F, Haynl A, Dimmler A, Koch C, Knoll C, van Beest M, Reuning U, et al (2004) β-Catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 64:1209–1214CrossRefPubMedGoogle Scholar
  26. Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T (2001) Expression of the invasion factor laminin γ2 in colorectal carcinomas is regulated by β-catenin. Cancer Res 61:8089–8093PubMedGoogle Scholar
  27. Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) β-Catenin activates a coordinated expression of the proinvasive factors laminin-5 γ2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108:321–326CrossRefPubMedGoogle Scholar
  28. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear β-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159:1613–1617CrossRefPubMedGoogle Scholar
  29. Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003) Survivin and molecular pathogenesis of colorectal cancer. Lancet 362:205–209CrossRefPubMedGoogle Scholar
  30. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170CrossRefPubMedGoogle Scholar
  31. Kirchner T, Brabletz T (2000) Patterning and nuclear β-catenin expression in the colonic adenoma–carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 157:1113–1121CrossRefPubMedGoogle Scholar
  32. Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL (1998) Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet 19:182–186CrossRefPubMedGoogle Scholar
  33. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383CrossRefPubMedGoogle Scholar
  34. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C (1999) Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96:1603–1608CrossRefPubMedGoogle Scholar
  35. Melton DA, Cowan C (2006) “Stemness”: definitions, criteria, and standards. In: Lanza R (ed) Essentials of stem cell biology. Elsevier, pp XXV–XXXIGoogle Scholar
  36. Natarajan E, Saeb M, Crum CP, Woo SB, McKee PH, Rheinwald JG (2003) Co-expression of p16(INK4A) and laminin 5 γ2 by microinvasive and superficial squamous cell carcinomas in vivo and by migrating wound and senescent keratinocytes in culture. Am J Pathol 163:477–491CrossRefPubMedGoogle Scholar
  37. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110CrossRefPubMedGoogle Scholar
  38. Palmqvist R, Rutegard JN, Bozoky B, Landberg G, Stenling R (2000) Human colorectal cancers with an intact p16/cyclin D1/pRb pathway have up-regulated p16 expression and decreased proliferation in small invasive tumor clusters. Am J Pathol 157:1947–1953CrossRefPubMedGoogle Scholar
  39. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMedGoogle Scholar
  40. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  41. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  42. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115CrossRefPubMedGoogle Scholar
  43. Schneikert J, Behrens J (2007) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56:417–425CrossRefPubMedGoogle Scholar
  44. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A (1999) The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527CrossRefPubMedGoogle Scholar
  45. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA 99:9433–9438CrossRefPubMedGoogle Scholar
  46. Tetsu O, McCormick F (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426CrossRefPubMedGoogle Scholar
  47. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454CrossRefPubMedGoogle Scholar
  48. Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC (2002) Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40:127–132CrossRefPubMedGoogle Scholar
  49. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, et al (2002) The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250CrossRefPubMedGoogle Scholar
  50. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154:515–523CrossRefPubMedGoogle Scholar
  51. Wong MH, Rubinfeld B, Gordon JI (1998) Effects of forced expression of an NH2-terminal truncated β-catenin on mouse intestinal epithelial homeostasis. J Cell Biol 141:765–777CrossRefPubMedGoogle Scholar
  52. Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61:8664–8667PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Pathologisches Institut der Ludwig-Maximilians-Universität München Thalkirchner Straße 36MunichGermany
  2. 2.Pathologisch-Anatomisches Institut der Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations