Strategies to Induce Nuclear Reprogramming

Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


The cloning of mammals from adult donor cells has demonstrated that the oocyte can reprogram a differentiated nucleus into a pluripotent embryonic state. Reprogramming of committed cells into pluripotent cells can also be achieved by the explantation of germ line cells and by the fusion of differentiated cells with embryonic cells. The future challenge will be to stably convert a differentiated cell into embryonic stem (ES) cells by the transient expression of defined genes. Recent findings suggest that the exposure of adult cells to a few defined factors can indeed induce a pluripotent-like state resembling that of ES cells. This approach may allow for the generation of patient-specific stem cells in order to study and treat degenerative diseases without recourse to nuclear transfer.


Embryonic Stem Embryonic Stem Cell Nuclear Transfer Pluripotent Cell Primordial Germ Cell 


  1. Andrews PW (2002) From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 357:405–417CrossRefPubMedGoogle Scholar
  2. Blau HM, Blakely BT (1999) Plasticity of cell fate: insights from heterokaryons. Semin Cell Dev Biol 10:267–272CrossRefPubMedGoogle Scholar
  3. Blelloch RH, Hochedlinger K, Yamada Y, Brennan C, Kim M, Mintz B, Chin L, Jaenisch R (2004) Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci USA 101:13985–13990PubMedGoogle Scholar
  4. Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103:933–938CrossRefPubMedGoogle Scholar
  5. Briggs R, King TJ (1957) Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J Morphol 100:269–311CrossRefGoogle Scholar
  6. Byrne JA, Simonsson S, Western PS, Gurdon JB (2003) Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13:1206–1213CrossRefPubMedGoogle Scholar
  7. Cheong HT, Takahashi Y, Kanagawa H (1993) Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol Reprod 48:958–963CrossRefPubMedGoogle Scholar
  8. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) On-line medical direction: a prospective study. Nature 439:216–219CrossRefPubMedGoogle Scholar
  9. Cowan CA, Atienza J, Melton DA, Eggan K (2005) Application of computer tomography-oriented criteria for stroke subtype classification in a prospective study. Science 309:1369–1373CrossRefPubMedGoogle Scholar
  10. Do JT, Scholer HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949CrossRefPubMedGoogle Scholar
  11. Durcova-Hills G, Adams IR, Barton SC, Surani MA, McLaren A (2006) The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441–1449CrossRefPubMedGoogle Scholar
  12. Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, 3rd Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214CrossRefPubMedGoogle Scholar
  13. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428:44–49CrossRefPubMedGoogle Scholar
  14. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefPubMedGoogle Scholar
  15. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203CrossRefPubMedGoogle Scholar
  16. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23CrossRefPubMedGoogle Scholar
  17. Hiiragi T, Solter D (2005) Reprogramming is essential in nuclear transfer. Mol Reprod Dev 70:417–421CrossRefPubMedGoogle Scholar
  18. Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038CrossRefPubMedGoogle Scholar
  19. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061CrossRefPubMedGoogle Scholar
  20. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885CrossRefPubMedGoogle Scholar
  21. Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477CrossRefPubMedGoogle Scholar
  22. Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM 3rd, Jaenisch R (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8:275–285CrossRefPubMedGoogle Scholar
  23. Inoue K, Wakao H, Ogonuki N, Miki H, Seino K, Nambu-Wakao R, Noda S, Miyoshi H, Koseki H, Taniguchi M, Ogura A (2005) Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 15:1114–1118CrossRefPubMedGoogle Scholar
  24. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012CrossRefPubMedGoogle Scholar
  25. Labosky PA, Barlow DP, Hogan BL (1994) mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Development 120:3197–3204PubMedGoogle Scholar
  26. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129:1807–1817CrossRefPubMedGoogle Scholar
  27. Li J, Ishii T, Feinstein P, Mombaerts P (2004) Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428:393–399CrossRefPubMedGoogle Scholar
  28. Li L, Connelly MC, Wetmore C, Curran T, Morgan JI (2003) Mouse embryos cloned from brain tumors. Cancer Res 63:2733–2736PubMedGoogle Scholar
  29. Maherli N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70CrossRefGoogle Scholar
  30. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefPubMedGoogle Scholar
  31. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847CrossRefPubMedGoogle Scholar
  32. Matsumura H, Tada M, Otsuji T, Yasuchika K, Nakatsuji N, Surani A, Tada T (2007) Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods 4:23–25CrossRefPubMedGoogle Scholar
  33. Miller RA, Ruddle FH (1976) Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 9:45–55CrossRefPubMedGoogle Scholar
  34. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642CrossRefPubMedGoogle Scholar
  35. Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992CrossRefPubMedGoogle Scholar
  36. Ogonuki N, Inoue K, Yamamoto Y, Noguchi Y, Tanemura K, Suzuki O, Nakayama H, Doi K, Ohtomo Y, Satoh M, Nishida A, Ogura A (2002) Early death of mice cloned from somatic cells. Nat Genet 30:253–254CrossRefPubMedGoogle Scholar
  37. Ogura A, Inoue K, Ogonuki N, Noguchi A, Takano K, Nagano R, Suzuki O, Lee J, Ishino F, Matsuda J (2000) Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62:1579–1584CrossRefPubMedGoogle Scholar
  38. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. NatureGoogle Scholar
  39. Oshima RG, McKerrow J, Cox D (1981) Murine embryonal carcinoma hybrids: decreased ability to spontaneously differentiate as a dominant trait. J Cell Physiol 109:195–204CrossRefPubMedGoogle Scholar
  40. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551CrossRefPubMedGoogle Scholar
  41. Rideout WM, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, Dausman J, Yanagimachi R, Jaenisch R (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110CrossRefPubMedGoogle Scholar
  42. Rideout WM, 3rd Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27CrossRefPubMedGoogle Scholar
  43. Rossant J, McBurney MW (1982) The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol 70:99–112PubMedGoogle Scholar
  44. Rousset JP, Bucchini D, Jami J (1983) Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multidifferentiated tumors in mice. Dev Biol 96:331–336CrossRefPubMedGoogle Scholar
  45. Silva J, Chambers I, Pollard S, Smith A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441:997–1001CrossRefPubMedGoogle Scholar
  46. Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628CrossRefPubMedGoogle Scholar
  47. Stewart MH, Bosse M, Chadwick K, Menendez P, Bendall SC, Bhatia M (2006) Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 3:807–815CrossRefPubMedGoogle Scholar
  48. Stewart TA, Mintz B (1982) Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. J Exp Zool 224:465–469CrossRefPubMedGoogle Scholar
  49. Sullivan S, Waterfall M, Gallagher EJ, McWhir J, Pells S (2006) Quantification of cell fusion by flow cytometry. Methods Mol Biol 325:81–97PubMedGoogle Scholar
  50. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16:6510–6520CrossRefPubMedGoogle Scholar
  51. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558CrossRefPubMedGoogle Scholar
  52. Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough JF, Sasai Y, Nakatsuji N, Tada T (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 227:504–510CrossRefPubMedGoogle Scholar
  53. Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561CrossRefPubMedGoogle Scholar
  54. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  55. Tamashiro KL, Wakayama T, Akutsu H, Yamazaki Y, Lachey JL, Wortman MD, Seeley RJ, D'Alessio DA, Woods SC, Yanagimachi R, Sakai RR (2002) Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 8:262–267CrossRefPubMedGoogle Scholar
  56. Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22:127–128CrossRefPubMedGoogle Scholar
  57. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374CrossRefPubMedGoogle Scholar
  58. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. NatureGoogle Scholar
  59. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRefPubMedGoogle Scholar
  60. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676CrossRefPubMedGoogle Scholar
  61. Yamazaki Y, Low EW, Marikawa Y, Iwahashi K, Bartolomei MS, McCarrey JR, Yanagimachi R (2005) Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci USA 102:11361–11366CrossRefPubMedGoogle Scholar
  62. Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA (2005) Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24:168–176CrossRefPubMedGoogle Scholar
  63. Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development 132:227–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Center for Regenerative Medicine and Cancer CenterMassachusetts General Hospital, Harvard Medical School and Harvard Stem Cell InstituteBostonUSA
  2. 2.Department of BiologyMassachusetts Institute of Technology, and Whitehead InstituteCambridgeUSA

Personalised recommendations