Advertisement

Bone Morphogenetic Proteins Regulate Tumorigenicity in Human Glioblastoma Stem Cells

  • S. G. M. Piccirillo
  • A. L. Vescovi
Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)

Abstract

Human glioblastomas appear to be established and expanded by cancer stem cells, which are endowed with tumour-initiating and perpetuating ability. We report that bone morphogenetic proteins (BMPs), amongst which BMP4 elicits the strongest effect, activate their cognate receptors (BMPRs) and trigger the Smad but not the MAP38 kinase signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation and increased expression of differentiated neural markers, without affecting cell viability. The concomitant reduction in the clonogenic ability, both in the size of the CD133+ side population and in the growth kinetics of GBM cells, indicates that BMP4 triggers a reduction in the in vitro cancer stem cell (CSC) pool. Accordingly, transient ex vivo exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most important, in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality which occur in 100% of control mice in less than 12 weeks, following intracerebral grafting of human GBM cells. These findings show that the BMP-BMPR signalling system, which controls the activity of normal brain stem cells, may also act as a key inhibitory regulator of cancer-initiating, GBM stem-like cells and identifies BMP4 as a novel, non-cytotoxic therapeutic effector, which may be used to prevent growth and recurrence of GBMs in humans.

Keywords

Glial Fibrillary Acidic Protein Cancer Stem Cell Neural Stem Cell Cancer Stem Cell Population Normal Neural Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefPubMedGoogle Scholar
  2. Barker FG 2nd, Chang SM, Gutin PH, Malec MK, McDermott MW, Prados MD, Wilson CB (1998) Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42:709–720; discussion 720–703CrossRefPubMedGoogle Scholar
  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  4. Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 98:71–108CrossRefPubMedGoogle Scholar
  5. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241CrossRefPubMedGoogle Scholar
  6. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284CrossRefPubMedGoogle Scholar
  7. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716CrossRefPubMedGoogle Scholar
  8. Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212PubMedGoogle Scholar
  9. Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, Broccoli V, Pellegrini M, Mallamaci A, Vescovi AL (2002) Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development 129:1633–1644PubMedGoogle Scholar
  10. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021CrossRefPubMedGoogle Scholar
  11. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMedGoogle Scholar
  12. Graham A, Koentges G, Lumsden A (1996) Neural crest apoptosis and the establishment of craniofacial pattern: An honorable death. Mol Cell Neurosci 8:76–83CrossRefGoogle Scholar
  13. Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445PubMedGoogle Scholar
  14. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606CrossRefPubMedGoogle Scholar
  15. Hall AK, Miller RH (2004) Emerging roles for bone morphogenetic proteins in central nervous system glial biology. J Neurosci Res 76:1–8CrossRefPubMedGoogle Scholar
  16. Hallahan AR, Pritchard JI, Chandraratna RA, Ellenbogen RG, Geyer JR, Overland RP, Strand AD, Tapscott SJ, Olson JM (2003) BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 9:1033–1038CrossRefPubMedGoogle Scholar
  17. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183CrossRefPubMedGoogle Scholar
  18. Holland EC, Hively WP, Gallo V, Varmus HE (1998) Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev 12:3644–3649CrossRefPubMedGoogle Scholar
  19. Hruska KA, Mathew S, Saab G (2005) Bone morphogenetic proteins in vascular calcification. Circ Res 97:105–114CrossRefPubMedGoogle Scholar
  20. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206CrossRefPubMedGoogle Scholar
  21. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786CrossRefPubMedGoogle Scholar
  22. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648CrossRefPubMedGoogle Scholar
  23. Li W, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862PubMedGoogle Scholar
  24. Liem KF Jr, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138CrossRefPubMedGoogle Scholar
  25. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726CrossRefPubMedGoogle Scholar
  26. Panchision DM, McKay RD (2002) The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 12:478–487CrossRefPubMedGoogle Scholar
  27. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, McKay RD (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15:2094–2110CrossRefPubMedGoogle Scholar
  28. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMedGoogle Scholar
  29. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219CrossRefPubMedGoogle Scholar
  30. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020PubMedGoogle Scholar
  31. Rajan P, Panchision DM, Newell LF, McKay RD (2003) BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 161:911–921CrossRefPubMedGoogle Scholar
  32. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  33. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336CrossRefPubMedGoogle Scholar
  34. Sela-Donenfeld D, Kalcheim C (1999) Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126:4749–4762PubMedGoogle Scholar
  35. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28CrossRefPubMedGoogle Scholar
  36. Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85:331–343CrossRefPubMedGoogle Scholar
  37. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  38. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  39. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335CrossRefPubMedGoogle Scholar
  40. Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83CrossRefPubMedGoogle Scholar
  41. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  42. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400CrossRefPubMedGoogle Scholar
  43. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034CrossRefPubMedGoogle Scholar
  44. Zuzarte-Luis V, Hurle JM (2005) Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 16:261–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Stemgen s.p.a, Department of Biotechnology and BiosciencesUniversity of Milan-BicoccaMilanItaly

Personalised recommendations