c-Myc and Activated Ras During Skin Tumorigenesis: Cooperation at the Cancer Stem Cell Level?

Conference paper
Part of the Springer Series on Biofilms book series (SCHERING FOUND, volume 2006/5)


Mutations leading to overexpression and activation of the oncogenes Myc and Ras are among the most frequent lesions known to occur in human and murine cancers. These genes are also the pioneering example for oncogene cooperation during tumorigenesis, whereby the anticancer effects of Myc deregulation (apoptosis) and oncogenic Ras (senescence) are antagonized and therefore canceled out by each other. Here I review the role of endogenous and overexpressed c-Myc in murine skin, focusing primarily on epidermal stem cells. In addition, recent data suggesting an essential role for the endogenous c-Myc-p21CIP1 pathway in Ras-driven skin tumorigenesis are discussed.


Hair Follicle Epidermal Stem Cell Bulge Region Interfollicular Epidermis Skin Tumorigenesis 



The author would like to thank Drs. Thordur Oskarsson, Christelle Adolphe and Anne Wilson for critical comments on the manuscript. This work was supported by grants to A.T. from the Swiss National Science Foundation, the Swiss Cancer League, and the EU-FP6 Program “INTACT”.


  1. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645CrossRefPubMedGoogle Scholar
  2. Arnold I, Watt FM (2001) c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 11:558–568CrossRefPubMedGoogle Scholar
  3. Benitah SA, Frye M, Glogauer M, Watt FM (2005) Stem cell depletion through epidermal deletion of Rac1. Science 309:933–935CrossRefPubMedGoogle Scholar
  4. Bettess MD, Dubois N, Murphy MJ, Dubey C, Roger C, Robine S, Trumpp A (2005) c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol Cell Biol 25:7868–7878CrossRefPubMedGoogle Scholar
  5. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373CrossRefPubMedGoogle Scholar
  6. Braig M, Schmitt CA (2006) Oncogene-induced senescence:putting the brakes on tumor development. Cancer Res 66:2881–2884CrossRefPubMedGoogle Scholar
  7. Bull JJ, Muller-Rover S, Patel SV, Chronnell CM, McKay IA, Philpott MP (2001) Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. J Invest Dermatol 116:617–622CrossRefPubMedGoogle Scholar
  8. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17(11):1395–1413CrossRefPubMedGoogle Scholar
  9. Carnero A, Beach DH (2004) Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23:6006–6011CrossRefPubMedGoogle Scholar
  10. Cory S, Vaux DL, Strasser A, Harris AW, Adams JM (1999) Insights from Bcl-2 and Myc:malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res 59(7):1685s–1692sPubMedGoogle Scholar
  11. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMedGoogle Scholar
  12. DiGiovanni J (1992) Multistage carcinogenesis in mouse skin. Pharmacol Ther 54:63–128CrossRefPubMedGoogle Scholar
  13. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129CrossRefPubMedGoogle Scholar
  14. Flores I, Murphy DJ, Swigart LB, Knies U, Evan GI (2004) Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 23:5923–5930CrossRefPubMedGoogle Scholar
  15. Frye M, Gardner C, Li ER, Arnold I, Watt FM (2003) Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130:2793–2808CrossRefPubMedGoogle Scholar
  16. Gebhardt A, Frye M, Herold S, Benitah SA, Braun K, Samans B, Watt FM, Elsasser HP, Eilers M (2006) Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J Cell Biol 172:139–149CrossRefPubMedGoogle Scholar
  17. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699CrossRefPubMedGoogle Scholar
  18. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V, Zardo G, Nervi C, Bernard L, Amati B (2006) Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8:764–770CrossRefPubMedGoogle Scholar
  19. Guney I, Sedivy JM (2006) Cellular senescence, epigenetic switches and c-Myc. Cell Cycle 5:2319–2323CrossRefPubMedGoogle Scholar
  20. Henriksson M, Luscher B (1996) Proteins of the Myc network:essential regulators of cell growth and differentiation. Adv Cancer Res 68:109–182CrossRefPubMedGoogle Scholar
  21. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521CrossRefPubMedGoogle Scholar
  22. Hurlin PJ, Foley KP, Ayer DE, Eisenman RN, Hanahan D, Arbeit JM (1995) Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 11:2487–2501PubMedGoogle Scholar
  23. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–548CrossRefPubMedGoogle Scholar
  24. Kelly-Spratt KS, Gurley KE, Yasui Y, Kemp CJ (2004) p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol 2:E242CrossRefPubMedGoogle Scholar
  25. Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16:2699–2712CrossRefPubMedGoogle Scholar
  26. Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25:2723–2734CrossRefPubMedGoogle Scholar
  27. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822CrossRefPubMedGoogle Scholar
  28. Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA (1986) Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6:1917–1925PubMedGoogle Scholar
  29. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417CrossRefPubMedGoogle Scholar
  30. Morris RJ, Tryson KA, Wu KQ (2000) Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res 60:226–229PubMedGoogle Scholar
  31. Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, Cole AM, Gregorieff A, de Alboran IM, Clevers H, Clarke AR (2006) Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol 26:8418–8426CrossRefPubMedGoogle Scholar
  32. Murphy MJ, Wilson A, Trumpp A (2005) More than just proliferation:Myc function in stem cells. Trends Cell Biol 15:128–137CrossRefPubMedGoogle Scholar
  33. Oskarsson T, Essers MA, Dubois N, Offner S, Dubey C, Roger C, Metzger D, Chambon P, Hummler E, Beard P, Trumpp A (2006) Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev 20:2024–2029CrossRefPubMedGoogle Scholar
  34. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451CrossRefPubMedGoogle Scholar
  35. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577CrossRefPubMedGoogle Scholar
  36. Perez-Losada J, Balmain A (2003) Stem-cell hierarchy in skin cancer. Nat Rev Cancer 3:434–443CrossRefPubMedGoogle Scholar
  37. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12:296–300CrossRefPubMedGoogle Scholar
  38. Quintanilla M, Brown K, Ramsden M, Balmain A (1986) Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322:78–80CrossRefPubMedGoogle Scholar
  39. Rodriguez-Puebla ML, Robles AI, Johnson DG, LaCava M, Conti CJ (1998) Synchronized proliferation induced by 12-O-tetradecanoylphorbol-13-acetate treatment of mouse skin: an in vivo model for cell cycle regulation. Cell Growth Differ 9:31–39PubMedGoogle Scholar
  40. Rounbehler RJ, Schneider-Broussard R, Conti CJ, Johnson DG (2001) Myc lacks E2F1's ability to suppress skin carcinogenesis. Oncogene 20:5341–5349CrossRefPubMedGoogle Scholar
  41. Sears RC (2004) The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3:1133–1137CrossRefPubMedGoogle Scholar
  42. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefPubMedGoogle Scholar
  43. Sharpless NE, DePinho RA (2005) Cancer: crime and punishment. Nature 436:636–637CrossRefPubMedGoogle Scholar
  44. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  45. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773CrossRefPubMedGoogle Scholar
  46. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363CrossRefPubMedGoogle Scholar
  47. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250CrossRefPubMedGoogle Scholar
  48. Van Duuren BL, Sivak A, Katz C, Seidman I, Melchionne S (1975) The effect of aging and interval between primary and secondary treatment in two-stage carcinogenesis on mouse skin. Cancer Res 35:502–505PubMedGoogle Scholar
  49. Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 28:165–168CrossRefPubMedGoogle Scholar
  50. Waikel RL, Wang XJ, Roop DR (1999) Targeted expression of c-Myc in the epidermis alters normal proliferation, differentiation and UV-B induced apoptosis. Oncogene 18:4870–4878CrossRefPubMedGoogle Scholar
  51. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501CrossRefPubMedGoogle Scholar
  52. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763CrossRefPubMedGoogle Scholar
  53. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106CrossRefPubMedGoogle Scholar
  54. Zanet J, Pibre S, Jacquet C, Ramirez A, de Alboran IM, Gandarillas A (2005) Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci 118:1693–1704CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Genetics and Stem Cell LaboratorySwiss Institute for Experimental Cancer Research (ISREC)EpalingesSwitzerland
  2. 2.School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations