Microstructured Reactors for Development and Production in Pharmaceutical and Fine Chemistry

  • V. Hessel
  • P. Löb
  • U. Krtschil
  • H. Löwe
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/3)


The true potential of microprocess technology for process intensification is not yet fully clear and needs to be actively explored, although more and more industrial case stories provide information. This paper uses a short-cut cost analysis to show the major cost portions for processes conducted by microstructured reactors. This leads to predicting novel chemical protocol conditions, which are tailored for microprocess technology and which are expected to highly intensify chemical processes. Some generic rules to approach this are termed new process windows, because they constitute a new approach to enabling chemistry. Using such process intensification together with scaled-out microstructured reactors, which is demonstrated by the example of gas–liquid microprocessing, paves the road to viable industrial microflow processes. Several such commercially oriented case studies are given. Without the use of new process windows conditions, microprocess technology will probably stick to niche applications.


Process Window Phenyl Boronic Acid Process Intensification Suzuki Coupling Pilot Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arthur de Little, SenterNovem (2006) Full study presented to platform for chain efficiency (PKE). Building a business case on process intensificationGoogle Scholar
  2. Belloni A (2006) Process 13:64–65Google Scholar
  3. Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15CrossRefGoogle Scholar
  4. Deibel S-R (2006) Anlagenbau: Schneller planen, rascher produzieren. CHE Manager 2:12Google Scholar
  5. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, WeinheimGoogle Scholar
  6. Fernández-Nieves A, Christobal G, Garcés-Chávez V, Spalding GC, Dholakia K, Weitz DA (2006) Optically anisotropic colloids of controllable shape. Adv Mat 17:680–684CrossRefGoogle Scholar
  7. Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X (2002) Tetrahedron 58:4735CrossRefGoogle Scholar
  8. Freitas S, Walz A, Merkle HP, Gander B (2003) Solvent extraction employing a static micromixer: a simple, robust and versatile technology for the microencapsulation of proteins. J Microencapsulation 20:67–85Google Scholar
  9. FZK Press release 13 (2005) 050927. Cited 6 July 2005Google Scholar
  10. Gavriilidis A, Angeli P, Cao E, Yeong KK, Wan YSS (2002) Trans IChemE 80/A:3CrossRefGoogle Scholar
  11. Haswell ST, Watts P (2003) Green Chem 5:240CrossRefGoogle Scholar
  12. Hessel V, Hardt S, Löwe H (2004a) Chemical micro process engineering—fundamentals, modelling and reactions. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  13. Hessel V, Löwe H, Schönfeld F (2004b) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501Google Scholar
  14. Hessel V, Angeli P, Gavriilidis A, Löwe H (2005a) Gas-liquid and gas-liquid-solid microstructured reactors—contacting principles and applications. Ind Eng Chem Res 44:9750–9769CrossRefGoogle Scholar
  15. Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A (2005b) Aqueous Kolbe-Schmitt synthesis using resorcinol in a micro-reactor laboratory rig under high-p,T conditions. Org Proc Res Dev 9:479–489CrossRefGoogle Scholar
  16. Hessel V, Löb P, Löwe H (2005c) Development of microstructured reactors to enable organic synthesis rather than subduing chemistry. Curr Org Chem 9:765–787CrossRefGoogle Scholar
  17. Hessel V, Löwe H, Müller A, Kolb G (2005d) Chemical micro process engineering—processing and plants. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  18. Hessel V, Hofmann C, Löb P, Löwe H, Parals M (2007) Micro-reactor processing for the aqueous Kolbe-Schmitt synthesis of hydroquinone and phloroglucinol. Chem Eng Technol 31, (in press)Google Scholar
  19. Iwasaki T, Kawano N, Yoshida Y-I (2006) Radical polymerization using micro flow system. Numbering-up of microreactors and continuous operation. Org Proc Res Dev 10:1126–1131CrossRefGoogle Scholar
  20. Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Chemistry in microstructured reactors. Ang Chem Int Ed 43:406–446CrossRefGoogle Scholar
  21. Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45:2051–2054CrossRefGoogle Scholar
  22. Jensen KF (2001) Microreaction engineering – is small better? Chem Eng Sci 56:293–303CrossRefGoogle Scholar
  23. Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309:887–888CrossRefGoogle Scholar
  24. Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry, Vol. 25. In: Mannhold R, Kubinyi H, Folkers G (eds) Methods and principles in medicinal chemistry. Wiley, Weinheim, pp 94–95Google Scholar
  25. Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida J-I (2006) Room temperature Swern oxidations by using a microscale flow system. Angew Chem Int Ed Engl 44:2413–2416CrossRefGoogle Scholar
  26. Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catalysis Today 110:2–14CrossRefGoogle Scholar
  27. Kolb G, Hessel V (2004) Micro-structured reactors for gas phase reactions: a review. Chem Eng J 98:1–38CrossRefGoogle Scholar
  28. Kubo A, Shinmori H, Takeuchi T (2006). Atrazine-imprinted microspheres prepared using a microfluidic device. Chem Lett 35:588–589CrossRefGoogle Scholar
  29. Krtschil U, Hessel V, Kralisch D, Kreisel G, Küpper M, Schenk R (2006) Cost analysis of a commercial manufacturing process of a fine chemical using micro process engineering. Chimia 60:611–617CrossRefGoogle Scholar
  30. Krummradt H, Kopp U, Stoldt J (2000) Experiences with the use of microreactors in organic synthesis. In: Proceedings of Microreaction Technology: 3rd International Conference on Microreaction Technology. Springer, Berlin Heidelberg New York, pp 181–186Google Scholar
  31. Link DR, Anna SL, Weitz DA, Stone, HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503-1-4Google Scholar
  32. Löb P, Hessel V, Krtschil U, Löwe H (2006a) Continuous micro-reactor rigs with capillary sections in organic synthesis—generic process flow sheets, practical experience, and “novel chemistry”. Chimica Oggi Chem Today 24:46–50Google Scholar
  33. Löb P, Löwe H, Hessel V, Hubbard SM, Menges G, Balon-Burger M (2006b) Determination of temperature profile within continuous micromixer-tube reactor used for the exothermic addition of dimethyl amine to acrylonitrile and an exothermic ionic liquid synthesis. In: Proceedings of AIChE Spring National Meeting, Orlando, 23–27 April, 2006Google Scholar
  34. Löwe H, Hessel V, Hubbard S, Löb P (2006) Addition of secondary amines to α,β-unsaturated carbonyl compounds and nitriles by using microstructured reactors. Org Proc Res Dev 10:1144–1152CrossRefGoogle Scholar
  35. Maeta et al (2006) Proceedings of the AIChE Spring National Meeting. Orlando, 23–27 April, 2006Google Scholar
  36. Markowz G, Schirrmeister S, Albrecht J, Becker F, Schütte R, Caspary KJ, Klemm E (2005) Microstructured reactors for heterogeneously catalysed gas-phase reactions on an industrial scale. Chem Eng Technol 28:459–464CrossRefGoogle Scholar
  37. Müller A, Cominos V, Hessel V, Horn B, Schürer J, Ziogas A, Jähnisch K, Hillmann V, Großer V, Jamc KA, Bazzanella A, Rinke G, Kraut M (2005) Fluidic bus system for chemical process engineering in the laboratory and for small-scale production. Chem Eng J 107:205–214CrossRefGoogle Scholar
  38. Pennemann H, Watts P, Haswell S, Hessel V, Löwe H (2004) Org Proc Res Dev 8:422CrossRefGoogle Scholar
  39. Pieters B, Andrieux G, Eloy J-C (2006) Technologies and market trends in microreaction technology, Chimica Oggi Chem Today 24:41–42Google Scholar
  40. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2004) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28:318–323CrossRefGoogle Scholar
  41. Roberge DM, Hogan J (2006) A little goes a long way. Nature 442:351–352CrossRefGoogle Scholar
  42. Re-dispersion Microreactor for the formation of Liquid-Liquid Dispersions for Use in PolycondensationGoogle Scholar
  43. Siskin M, Katritzky AR (1991) Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254:231–237CrossRefGoogle Scholar
  44. Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for applications in thermal and chemical process engineering. Microscale Thermophys Eng 5:17–39CrossRefGoogle Scholar
  45. Thayer AM (2005) Harnessing microreactions. Chem Eng News Coverstory 83:43–52.Google Scholar
  46. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRefGoogle Scholar
  47. Wakami, Yohsid J-I (2006) Grignard exchange reaction using micro flow system. From bench to pilot plant. Org Proc Res Dev 9:787–791CrossRefGoogle Scholar
  48. Wille C, Gabski H-P, Haller T, Kim H, Unverdorben L, Winter R (2004) Synthesis of pigments in a three-stage microreactor pilot plant—an experimental technical report. Chem Eng J 101:179–185CrossRefGoogle Scholar
  49. Wischke C, Lorenzen D, Zimmermann J, Borchert H-H (2006) Preparation of protein loaded poly(D,L-lactide-co-glycolide) microparticles for the antigen delivery to dentritic cells using a static micromixer. Eur J Pharma Biopharma 62:247–253CrossRefGoogle Scholar
  50. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Douglas B, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering and ChemistryEindhoven University of Technology EindhovenThe Netherlands
  2. 2.Chemical Process Technology DepartmentInstitut für Mikrotechnik Mainz GmbHMainzGermany

Personalised recommendations