Applying Homogeneous Catalysis for the Synthesis of Pharmaceuticals

  • M. Beller
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/3)


This article describes recent achievements of my research group in the Leibniz-Institut für Katalyse e.V. in the area of applied homogeneous catalysis for the synthesis of biologically active compounds. Special focus is given on the development of novel and practical palladium and copper catalysts for the functionalization of haloarenes and haloheteroarenes.


Amyotrophic Lateral Sclerosis Aryl Halide Homogeneous Catalysis Potassium Hexacyanoferrate Carboxylic Acid Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work on the development of transition metal catalysts described herein was funded by Degussa AG, Saltigo GmBH, Merck KGA, the BMBF, the FCI, the Alexander von Humboldt-Stiftung, the Max-Buchner-Forschungsstiftung, and the state of Mecklenburg-Vorpommern. I am thankful to all members of my group who worked for nearly a decade on the development of new catalysts for the synthesis of biologically active compounds, especially Dr. Alexander Zapf, Dipl. Chem. Andreas Ehrentraut, Dr. Anja Frisch, Dr. Mario Gomez, Dr. Surendra Harkal, Dr. Ralf Jackstell, Dr. Jürgen Krauter, Dr. Kamal Kumar, Dr. Wolfgang Mägerlein, Dr. Thomas Schareina, and Dr. Kumaravel Selvakumar. In addition, the work presented here would have not been possible without trustful and active industrial cooperation partners in this area. Here, I am very thankful to Dr. Thomas Riermeier, Dr. Axel Monsees, Dr. Juan Almena, Renat Kadyrov (all Degussa AG, Dr. Wolfgang Mägerlein, Dr. Nikolaus Müller (Saltigo GmbH), and Dr. Michael Arlt (Merck KGA).


  1. Beller M, Bolm C (eds) (2004) Transition metals for organic synthesis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  2. Beller M, Zapf A (2002) In: Negishi EI (ed) Organopalladium chemistry for organic synthesis, Vol. 1, Wiley-Interscience, New York, pp 1209–1222Google Scholar
  3. Beller M, Zapf A, Mägerlein W (2001) Chem Eng Techn 24:575–582CrossRefGoogle Scholar
  4. Beller M, Breindl M, Eichberger M, Hartung CG, Seayad J, Thiel O, Tillack A, Trauthwein H (2002) Synlett, p 1579–1594Google Scholar
  5. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347CrossRefGoogle Scholar
  6. Chidambaram R (2004) Tetrahedron Lett 45:1441–1444CrossRefGoogle Scholar
  7. Chobanian HR Fors BP, Lin LS (2006) Tetrahedron Lett 47:3303–3306CrossRefGoogle Scholar
  8. de Vries JG (2001) Can J Chem 79:1086–1092CrossRefGoogle Scholar
  9. Ehrentraut A, Zapf A, Beller M (2000) Synlett, pp 1589–1592Google Scholar
  10. Ehrentraut A, Zapf A, Beller M (2002a) J Mol Cat 182–183:515–523CrossRefGoogle Scholar
  11. Ehrentraut A, Zapf A, Beller M (2002b) Adv Synth Catal 344:209–217CrossRefGoogle Scholar
  12. Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F (2005) Tetrahedron Lett 46:8645–8647CrossRefGoogle Scholar
  13. Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W-R, Rossen K, Beller M (2006) A general and efficient method for the formylation of aryl and heteroaryl bromides. Angew Chem Int Ed 45:154–156CrossRefGoogle Scholar
  14. Klein H, Jackstell R, Beller M (2005) Synthesis of linear aldehydes from internal olefins in water. Chem Commun 2283–2284Google Scholar
  15. Kumar K, Michalik D, Garcia Castro I, Tillack A, Zapf A, Arlt M, Heinrich T, Böttcher H, Beller M (2004) Biologically active compounds through catalysis: efficient synthesis of N-(heteroarylcarbonyl)-N'-(arylalkyl)piperazines. Chem Eur J 10:746–757CrossRefGoogle Scholar
  16. Larock RC (1989) Comprehensive organic transformations. VCH, New YorkGoogle Scholar
  17. Moballigh A, Seayad A, Jackstell R, Beller M (2003) Amines made easily: a highly selective hydroaminomethylation of olefins. J Am Chem Soc 125:10311–10318CrossRefGoogle Scholar
  18. Neumann H, Brennführer A, Groß P, Riermeier T, Almena J, Beller M (2006) Adv Synth Catal 348:1255–1261CrossRefGoogle Scholar
  19. Ramnauth J, Bhardwaj N, Renton P, Rakhit S, Maddaford SP (2003) Synlett 2237–2238Google Scholar
  20. Schareina T, Zapf A, Beller M (2004a) Potassium hexacyanoferrate(II)—a new cyanating agent for the palladium-catalyzed cyanation of aryl halides. Chem Commun 1388–1389Google Scholar
  21. Schareina T, Zapf A, Beller M (2004b) J Organomet Chem 689:4576–4583CrossRefGoogle Scholar
  22. Schareina T, Zapf A, Beller M (2005) Tetrahedron Lett 46:2585–2588CrossRefGoogle Scholar
  23. Seayad J, Tillack A, Hartung CJ, Beller M (2002) Adv Synth Catal 344:795–813CrossRefGoogle Scholar
  24. Sundermeier M, Zapf A, Beller M (2001) J Sans Tetrahedron Lett 42:6707–6710CrossRefGoogle Scholar
  25. Sundermeier M, Zapf A, Beller M (2003) A convenient procedure for the palladium-catalyzed cyanation of aryl halides. Angew Chem Int Ed 42:1661–1664CrossRefGoogle Scholar
  26. Veauthier JM, Carlson CN Collis GE, Kiplinger JL, John KD (2005) Synthesis 2686–2683Google Scholar
  27. Zapf A, Beller M (2005) The development of efficient catalysts for palladium-catalyzed coupling reactions of aryl halides. Chem Commun 431–440Google Scholar
  28. Zapf A, Ehrentraut A, Beller M (2000a) Angew Chem 112:4315–4317CrossRefGoogle Scholar
  29. Zapf A, Ehrentraut A, Beller M (2000b) A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with arylboronic acids palladium-catalyzed reactions for fine chemical synthesis, Part 17. Angew Chem Int Ed 39:4153–4156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Leibniz-Institut für Katalyse e.V.University of RostockRostockGermany

Personalised recommendations