Advertisement

Isoindolones and Related N-Heterocycles Isoindolones and Related N-Heterocycles via Palladium Nanoparticle-Catalyzed 3-Component Cascade Reactions

  • R. Grigg
  • V. Sridharan
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/3)

Abstract

Non-phosphine-containing cyclopalladated N-heterocycles possessing either sp2 C–Pd(II) or sp3 C–Pd(II) bonds and simple Pd(II) salts are precursors of Pd(0) nanoparticles whose initial morphology is dependent on the nature of the precursor. Addition of polyvinylpyrrolidone (pvp) dramatically increases catalyst lifetime. Nanoparticle generation can be achieved at ambient temperature in the presence of carbon monoxide by a process akin to the water–gas shift reaction. Allene also lowers the temperature required for nanoparticle generation. 3-Component catalytic cascades employing one or both of these substrates provide access to a variety of 5- and 6-membered N-heterocycles including isoindolones, N-aminoisoindolones, phthalazones, dihydroisoquinolines, and isoquinolones.

Keywords

Allyl Amine Heck Reaction Palladium Acetate Aryl Chloride Michael Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Johnson Matthey, Avecia, GlaxoSmithkline, the EPRSC, and Leeds University for support.

References

  1. Albisson DA,Bedford RB, Lawerence SE, Scully PN (1998) Orthopalladated triaryl phosphite complexes as highly active catalysts in biaryl coupling reactions. Chem Commun 2095–2096Google Scholar
  2. Alonso DA, Najera C, Pacheco C (2002) Oxime-derived palladium complexes as very efficient catalysts for the Heck-Mizoroki reaction. Adv Synth Catal 344:172–183CrossRefGoogle Scholar
  3. Amatore C, Jutand A (1998) Coord Chem Rev 178–180:11–528Google Scholar
  4. Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33:314–321CrossRefGoogle Scholar
  5. Anwar U, Grigg R, Rasparini M, Savic V, Sridharan V (2000) Palladium catalysed cyclisation-Barbier-type allylation cascades Chem Commun 933–934Google Scholar
  6. Bedford RB, Cazin CSJ, Hazelwood SL (2002a) Simple mixed tricyclohexylphosphane-triarylphosphite complexes as extremely high-activity catalysts for the Suzuki coupling of aryl chlorides. Angew Chem Int Ed 41:4120–4122CrossRefGoogle Scholar
  7. Bedford RB, Limmert ME, Hazelwood SL, Albisson DA (2002b) Platinum catalysts for Suzuki biaryl coupling reactions. Organometallics 21:2599–2600CrossRefGoogle Scholar
  8. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066CrossRefGoogle Scholar
  9. Cleghorn LAT, Cooper IR, Fishwick CWG, Grigg R, MacLachlan WS, Rasparini M, Sridharan V (2003a) Three-component bimetallic (Pd/In) mediated cascade allylation of C=X functionality: Part 1. Scope and class 1 examples with aldehydes and ketones. J Organomet Chem 687:483–493CrossRefGoogle Scholar
  10. Cleghorn LAT, Cooper IR, Grigg R, MacLachlan WS, Sridharan V (2003b) Additive effects in palladium–indium mediated Barbier type allylations. Tetrahedron Lett 44:7969–7973CrossRefGoogle Scholar
  11. Cleghorn LAT, Grigg R, MacLachlan WS, Sridharan V (2005) Bimetallic catalytic synthesis of annelated benzazepines. Chem Commun 3071–3073Google Scholar
  12. Cooper IR, Grigg R, MacLachlan WS, Sridharan V, Thomas WA (2002a) Diastereo- and regioselective palladium–indium bimetallic cyclisation–Barbier-type allylation cascades. Tetrahedron Lett 44:403–405CrossRefGoogle Scholar
  13. Cooper IR, Grigg R, MacLachlan WS, Thornton-Pett M, Sridharan V (2002b) 3-Component palladium–indium mediated diastereoselective cascade allylation of imines with allenes and aryl iodides. Chem Commun 1372–1373Google Scholar
  14. Curtin ML, Frey RR, Heyman HR, Serris KA, Steenman DH, Holmes JH, Bousquet PF, Gunha GA, Moskey MD, Ahmed AA, Pease LJ, Glare KB, Stewart KD, Davidren SK, Michaelides M (2004) Isoindolinone ureas: a novel class of KDR kinase inhibitors. Bioorg Med Chem Lett 14:4505–4509CrossRefGoogle Scholar
  15. Dupont J, Consorti CS, Spencer J (2005) The potential of palladacycles: more than just precatalysts. Chem Rev 105:2527–2571CrossRefGoogle Scholar
  16. Evans P, Hogg P, Grigg R, Nurnabi M, Hinsley J, Sridharan V, Suganthan S, Korn S, Collard S, Muir JE (2005) 8-Methylquinoline palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Tetrahedron 61:9696–9704CrossRefGoogle Scholar
  17. Funato N, Takayanagi H, Konda Y, Harigaya Y (1994) Absolute configuration of staurosporine by x-ray analysis. Tetrahedron Lett 35:1251–1254CrossRefGoogle Scholar
  18. Gai X, Grigg R, Collard S, Muir J (2000a) Palladium catalyzed intramolecular nucleophilic addition of allylic species, generated from allene, to aryl aldehydes and ketones. Chem Commun 1765–1766Google Scholar
  19. Gai X, Grigg R, Collard S, Muir J (2000a) Palladium catalyzed intramolecular nucleophilic addition of allylic species, generated from allene, to aryl aldehydes and ketones. Chem Commun 1765–1766Google Scholar
  20. Gai X, Grigg R, Ramzan MI, Sridharan V Collard S, Muir JE (2000b) Pyrazole and benzothiazole palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Chem Commun 2053–2054Google Scholar
  21. Gai X, Grigg R, Khamnaen T, Rajviroongit S, Sridharan V, Zhang L, Collard S, Keep A (2003a) Synthesis of 3-substituted isoindolin-1-ones via a palladium-catalyzed 3-component carbonylation/amination/Michael addition process. Tetrahedron Lett 44:7441–7443CrossRefGoogle Scholar
  22. Gai X, Grigg R, Koppen I, Marchbank J, Sridharan V (2003b) Synthesis of carbo- and heterocycles via a palladium-catalysed allene insertion–nucleophile incorporation–Michael addition cascade. Tetrahedron Lett 44:7445–7448CrossRefGoogle Scholar
  23. Gai X, Grigg R, Khamnaen T, Rajviroongit S, Sridharan V, Zhang L, Collard S, Keep A (2005) Synthesis of N-substituted isoindolinones via a palladium catalyzed three-component carbonylation–amination–Michael addition cascade. Can J Chem 83:990–1005CrossRefGoogle Scholar
  24. Green SJ, Swartz EM, Shah JH, Madsen J, D'Amato RJ (2001) USP 6071948Google Scholar
  25. Grigg R, Khamnaen T, Rajviroongit S, Sridharan V (2002) Synthesis of N-substituted 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-ones via a palladium-catalysed three-component process. Tetrahedron Lett 43:2601–2603CrossRefGoogle Scholar
  26. Grigg R, Zhang L, Collard S, Keep A (2003) Isoindolinones via a room temperature palladium nanoparticle-catalysed 3-component cyclative carbonylation–amination cascade. Tetrahedron Lett 44:6979–6982CrossRefGoogle Scholar
  27. Grigg R, Zhang L, Collard S, Ellis P, Keep A (2004) Facile generation and morphology of Pd nanoparticles from palladacycles and carbon monoxide. J Organomet Chem 689:170–173CrossRefGoogle Scholar
  28. Gruber AS, Zim D, Ebeling G, Monteiro AL Dupont (2000) Sulfur-containing palladacycles as catalyst precursors for the Heck reaction. J Org Lett 2:1287–1290CrossRefGoogle Scholar
  29. Herrmann WA, Muchlhofer M (2002) In: Cornils B, Herman WA (eds) Applied homogenous catalysts with organometallic compounds, 2nd edn., Vol. 3. Wiley-VCH, Weinhein, Germany, pp 1086–1093Google Scholar
  30. Herrmann WA, Brossmer C, Oefele K, Reisinger CP, Priermeie T, Beller M, Fisher H (1995) Coordination chemistry and mechanisms of metal-catalyzed C–C coupling reactions. Part 5. Palladacycles as structurally defined catalysts for the Heck olefination of chloro- and bromoarenes. Angew Chem Int Ed Engl 34:1844–1847CrossRefGoogle Scholar
  31. Herrmann WA, Brossmer C, Reisinger CP, Riermaier T, Ofele K, Beller M (1997) Coordination chemistry and mechanisms of metal-catalyzed C–C coupling reactions. Part 10. Palladacycles: efficient new catalysts for the Heck vinylation of aryl halides. Chem Eur J 3:1357–1364CrossRefGoogle Scholar
  32. Iyer S, Jayanthi A (2001) Acetylferrocenyloxime palladacycle-catalyzed Heck reactions. Tetrahedron Lett 42:7877–7878CrossRefGoogle Scholar
  33. Iyer S, Ramesh C (2000) Aryl–Pd covalently bonded palladacycles, novel amino and oxime catalysts {di-μ-chlorobis(benzaldehydeoxime-6-C,N)dipalladium(II), di-μ-chlorobis(dimethylbenzylamine-6-C,N)dipalladium(II)} for the Heck reaction. Tetrahedron Lett 41:8981–8984CrossRefGoogle Scholar
  34. Jeffery T (1984) Palladium-catalysed vinylation of organic halides under solid–liquid phase transfer conditions. J Chem Soc Chem Commun 1287–1289; (b) idem,Google Scholar
  35. Jeffery T (1996) In: Liebeskind LS (ed) Advances in metal-organic chemistry. Vol. 5. JAI Press, London, pp 153–260Google Scholar
  36. Kopple K, Meyerstein D, Meisel D (1980) Mechanism of the catalytic hydrogen production by gold sols. Hydrogen/deuterium isotope effect studies. J Phys Chem 84:870–875CrossRefGoogle Scholar
  37. Louie J, Hartwig JF (1996) A route to Pd0 from PdII metallacycles in amination and cross-coupling chemistry. Angew Chem Int Ed Engl 35:2359–2361CrossRefGoogle Scholar
  38. Mucalo MR, Coouey RP (1989) F.T.I.R. spectra of carbon monoxide adsorbed on platinum sols. J Chem Soc Chem Commun 94–95Google Scholar
  39. Munoz MP, Martin-Matute B, Fernandez-Rivas C, Cardenas DJ, Echavarren AM (2001) Palladacycles as precatalysts in Heck and cross-coupling reactions. Adv Synth Catal 343:338–342CrossRefGoogle Scholar
  40. Norman MH, Minick DJ, Rigdon GC (1996) Effect of linking bridge modifications on the antipsychotic profile of some phthalimide and isoindolinone derivatives. J Med Chem 39:149–157CrossRefGoogle Scholar
  41. Ohff M, Ohff A, Milstein D (1999) Highly active PdII cyclometallated imine catalysts for the Heck reaction. Chem Commun 357–358Google Scholar
  42. Palencia H, Garcia-Jimenez F, Takacs JM (2004) Suzuki–Miyaura coupling with high turnover number using an N-acyl-N-heterocyclic carbene palladacycle precursor. Tetrahedron Lett 45:3849–3853CrossRefGoogle Scholar
  43. Powell DR, Dahl LF (2000) Nanosized Pd145(CO)x(PEt3)30 Containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew Chem Int Ed 39:4121–4125CrossRefGoogle Scholar
  44. Rosner T, Le Bars J, Pfaltz A, Blackmond DG (2001a) Kinetic studies of Heck coupling reactions using palladacycle catalysts: experimental and kinetic modeling of the role of dimer species. J Am Chem Soc 123:1848–1855CrossRefGoogle Scholar
  45. Rosner T, Pfaltz A, Blackmond DG (2001b) Observation of unusual kinetics in Heck reactions of aryl halides: the role of non-steady-state catalyst concentration. Ibid 4621–4622Google Scholar
  46. Roucoux A, Schultz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts. Chem Rev 102:3757–3778CrossRefGoogle Scholar
  47. Toyooka K, Kanamitsu N, Yoshimra M (2004) PCT international application WO2004/048332Google Scholar
  48. Van Srijdonck GPF, Boete MDK, van Leeuwen PWN (1999) Fast palladium catalyzed arylation of alkenes using bulky monodentate phosphorus ligands. Eur J Inorg Chem 1073–1076Google Scholar
  49. Weissman H, Milstein D (1999) Highly active PdII cyclometallated imine catalyst for the Suzuki reaction. Chem Commun 1901–1902Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemistry DepartmentLeeds UniversityLeedsUK

Personalised recommendations