Microchemical Systems for Discovery and Development

  • K. F. Jensen
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/3)


Applications of silicon-based microreactors are summarized starting with systems for single-phase organic transformations and progressing through multiphase catalytic systems to microsystems for multistep chemical synthesis. The latter systems involve extraction and gas–liquid separation processes designed to take advantage of the dominance of surface tension effects in microfluidic devices. Integration of physical sensors (e.g., for pressure, temperature, and flow) and measurements of chemical species further enhances the utility of microreactors by enabling chemical kinetic studies and optimization of optimal operating conditions. A brief description of synthesis and handling of solid particulates is included, with particular emphasis on multistep processing of colloidal nanoparticles. Finally, scale-up issues and challenges to the adoption of microreaction technology are discussed.


Capillary Pressure Microfluidic System Liquid Separation Microreaction Technology Direct Fluorination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks members of the microreactor research group and collaborators for the work forming the basis for this summary, J. McMullen and N. Zaborenko for critical reading of the manuscript, and DARPA, ARO-MURI and the MicroChemical Systems Technology Center for funding.


  1. Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK (2006) A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem Commun, p 2566–2568Google Scholar
  2. Chambers RD, Spink RCH (1999) Microreactors for elemental fluorine. Chem Commun, p 883–884Google Scholar
  3. De Mas N, Günther A, Schmidt MA, Jensen KF (2003) Microfabricated multiphase reactors for the selective direct fluorination of aromatics. Ind Eng Chem Res 42:698–710CrossRefGoogle Scholar
  4. De Mas N, Günther A, Kraus T, Schmidt MA, Jensen KF (2005) Scaled-out multilayer gas–liquid microreactor with integrated velocimetry sensors. Ind Eng Chem Res 44:8997–9013CrossRefGoogle Scholar
  5. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907CrossRefGoogle Scholar
  6. Ehrfeld W (1997) (ed) Microreaction technology. Springer, Berlin New York HeidelbergGoogle Scholar
  7. Ehrfeld W, Golbig K, Hessel V, Lowe H, Richter T (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38:1075–1082CrossRefGoogle Scholar
  8. Ehrfeld W, Hessel V, Lowe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  9. Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang XL (2002) Microreactors: principles and applications in organic synthesis. Tetrahedron 58:4735–4757CrossRefGoogle Scholar
  10. Floyd TM, Schmidt MA, Jensen KF (2005) Silicon micromixers with infrared detection for studies of liquid-phase reactions. Ind Eng Chem Res 44:2351–2358CrossRefGoogle Scholar
  11. Fredrickson CK, Fan ZH (2004) Macro-to-micro interfaces for microfluidic devices. Lab Chip 4:526–533CrossRefGoogle Scholar
  12. Govindan CK (2002) An improved process for the preparation of benzyl-n-vinyl carbamate. Org Process Res Dev 6:74–77CrossRefGoogle Scholar
  13. Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503CrossRefGoogle Scholar
  14. Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas liquid flow. Langmuir 21:1547–1555CrossRefGoogle Scholar
  15. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536CrossRefGoogle Scholar
  16. Herzig-Marx R, Queeney KT, Rebecca JJ, Schmidt MA, Jensen KF (2004) Infrared spectroscopy for chemically specific sensing in silicon-based microreactors. Anal Chem 76:6476–6483CrossRefGoogle Scholar
  17. Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A (2005) Aqueous Kolbe-Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-P,T conditions. Org Process Res Dev 9:479–489CrossRefGoogle Scholar
  18. Inoue T, Schmidt MA, Jensen KF (2007) Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Ind Eng Chem Res 46:1153–1160Google Scholar
  19. Jackman RJ, Floyd TM, Ghodssi R, Schmidt MA, Jensen KF (2001) Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J Micromech Microeng 11:263–269CrossRefGoogle Scholar
  20. Jähnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Lowe H, Wille C, Guber A (2000) Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J Fluorine Chem 105:117–128CrossRefGoogle Scholar
  21. Jähnisch K, Hessel V, Lowe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446CrossRefGoogle Scholar
  22. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  23. Khan SA (2006) Microfluidic synthesis of colloidal nanomaterials. PhD dissertation, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  24. Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20:8604–8611CrossRefGoogle Scholar
  25. Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Pile-up glass microreactor. Lab Chip 2:193–196CrossRefGoogle Scholar
  26. Knitter R, Gohring D, Risthaus P, Hausselt J (2001) Microfabrication of ceramic microreactors Microsys Technol 7:85–90Google Scholar
  27. Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S (2004) A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 304:1305–1308CrossRefGoogle Scholar
  28. Kralj JG, Sahoo HR, Jensen KF (2007) Integrated continuous microfluidic liquid–liquid extraction. Lab Chip 7:256–263Google Scholar
  29. Lee CC, Sui GD, Elizarov A, Shu CYJ, Shin YS, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng HR (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:1793–1796CrossRefGoogle Scholar
  30. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRefGoogle Scholar
  31. Leung S-A, Winkle RF, Wootton RCR, deMello AJ (2005) A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online raman spectroscopic detection. Analyst 130:46–51CrossRefGoogle Scholar
  32. Löbbecke S, Ferstl W, Pani S, Türcke T (2005) Concepts for modularization and automation of microreaction technology. Chem Eng Tech 28:484–493CrossRefGoogle Scholar
  33. London AP, Ayon AA, Epstein AH, Spearing SM, Harrison T, Peles Y, Kerrebrock JL (2001) Microfabrication of a high-pressure bipropellant microrocket engine. Sensors Actuators A 92:351–357CrossRefGoogle Scholar
  34. Losey MW, Schmidt MA, Jensen KF (2001) Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions. Ind Eng Chem Res 40:2555–2562CrossRefGoogle Scholar
  35. Losey MW, Jackman RJ, Firebaugh SL, Schmidt MA, Jensen KF (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst 11:709–717CrossRefGoogle Scholar
  36. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca RatonGoogle Scholar
  37. Murphy ER (2006) Microchemical systems for rapid optimization of organic synthesis. Ph.D. Thesis, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  38. Murphy ER, Martinelli JR, Zaborenko N, Buchwald SL, Jensen KF (2007) Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. Angew Chem Int Ed 46:1734–1737Google Scholar
  39. Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans R Soc London, A 362:923–935CrossRefGoogle Scholar
  40. Pennemann H, Watts P, Haswell SJ, Hessel V, Lowe H (2004) Benchmarking of microreactor applications. Org Process Res Dev 8:422–439CrossRefGoogle Scholar
  41. Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH (2005) Microreactor-based reaction optimization in organic chemistry—glycosylation as a challenge. Chem Commun 5:578–580Google Scholar
  42. Robins I, Shaw J, Miller B, Turner C, Harper M (1997) Solute transfer by liquid/liquid exchange without mixing in micro-contactor devices. In: Ehrfeld W (ed) Microreaction technology: proceedings of the first international conference on microreaction technology. Springer, Berlin New York Heidelberg, pp 35–46Google Scholar
  43. Sahoo HR, Kralj JG, Jensen KF (2007) Multi-step continuous flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Ed, DOI anie.200701434Google Scholar
  44. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772CrossRefGoogle Scholar
  45. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651CrossRefGoogle Scholar
  46. Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of fe(ii) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72:1711–1714CrossRefGoogle Scholar
  47. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRefGoogle Scholar
  48. Wada Y, Schmidt MA, Jensen KF (2006) Flow distribution and ozonolysis in gas-liquid multichannel microreactors. Ind Eng Chem Res 45:8036–8042Google Scholar
  49. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551–575CrossRefGoogle Scholar
  50. Yen BKH, Gunther A, Schmidt MA, Jensen KF, Bawendi MG (2005) A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew Chem Int Ed 44:5447–5451CrossRefGoogle Scholar
  51. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite pdms/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction. Angew Chem Int Ed 43:2508–2511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations