Skip to main content

Micro-Fluidic and Lab-on-a-Chip Technology

  • Conference paper
  • First Online:
New Avenues to Efficient Chemical Synthesis

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2006/3))

Abstract

By reducing the operational dimensions of a conventional macro-fluidic-based system down to the micron scale, one can not only reduce the sample volume, but also access a range of unique characteristics, which are not achievable in conventional macro-scale systems. This chapter will discuss the unique properties of miniaturised systems based on micro-fluidic and Lab-on-a-Chip technology and consider how these may influence the overall performance associated with chemical and biological processing. Some consideration will also be given to the selection of materials and/or surface modifications that will be proactive in exploiting the high surface area and thermal and mass transfer properties, to enhance process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson H, van den Berg A (2004) Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4:98–103

    Article  CAS  Google Scholar 

  • Fick A (1855) Uber diffusion. Ann Phys Chem 94:59

    Article  Google Scholar 

  • Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X (2002a) Micro reactors: principles and applications in organic synthesis. Tetrahedron 58:4735

    Article  CAS  Google Scholar 

  • Fletcher PDI, Haswell SJ, Zhang X (2002b) Electrokinetic control of a chemical reaction in a lab-on-a-chip micro-reactor: measurement and quantitative modeling. Lab Chip 2:102

    Article  CAS  Google Scholar 

  • Fletcher PDI, Haswell SJ, Watts P, Zhang X (2004) Dekker encyclopedia of nanoscience and nanotechnology 2:1547

    Google Scholar 

  • Fritz JL, Owen MJ (1995) Hydrophobic recovery of plasma-treated polydimethylsiloxane. J Adhesives 54:33

    Article  CAS  Google Scholar 

  • Gillmor SD, Larson BJ, Braun JM, Mason CE, Cruz-Barba LE, Denes F, Lagally MG (2002) Low-contact-angle polydimethyl siloxane (PDMS) membranes for fabricating micro-bioarrays. Proceedings of the 2nd Annual IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison WI, USA, p 51

    Google Scholar 

  • Haber C (2006) Microfluidics in commercial applications; an industry perspectiva. Lab Chip 6:1118–1821

    Article  CAS  Google Scholar 

  • Handique K, Burke DT, Mastrangelo CH, Burns MA (2000) Nanoliter liquid metering in microchannels using hydrophobic patterns. Anal Chem 72:4100–4109

    Article  CAS  Google Scholar 

  • Hau WLW, Trau DW, Sucher NJ, Wong M, Zohar Y (2003) Surface-chemistry technology for microfluidics. J Micromech Microeng 13:272

    Article  CAS  Google Scholar 

  • He P, Haswell SJ, Fletcher PDI (2004) Lab Chip 4:8

    Article  Google Scholar 

  • Hu SW, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal Chem 74:4117

    Article  CAS  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science. Academic Press, London

    Google Scholar 

  • Jensen KF (2001) Microreaction engineering: is small better? Chem Eng Sci 56:293

    Article  CAS  Google Scholar 

  • Lagally E, Mathies RA (2004) Integrated genetic analysis: microsystems. J Phy D Appl Phys 37:R245

    Article  CAS  Google Scholar 

  • Laurell T, Nilsson J, Jensen K, Harrison DJ, Kutter JP (eds) (2004) 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2004). Malmö, Sweden, September 26–30

    Google Scholar 

  • Manz A, Becker H (eds) (1998) Microsystem technology in chemistry and life sciences. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Metaxas AC, Meredith RJ (1983) Industrial microwave heating. Peter Peregrinus, London

    Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem 77:685

    Article  CAS  Google Scholar 

  • Munson MS, Hasenbank MS, Fu E, Yager P (2004) Suppression of non-specific adsorption using sheath flow. Lab Chip 4:438–445

    Article  CAS  Google Scholar 

  • Munson MS, Hawkins KR, Hasenbank MS, Yager P (2005) Diffusion-based analysis in a sheath flow microchannel: the sheath flow T-sensor. Lab Chip 5:856–862

    Article  CAS  Google Scholar 

  • Nikbin N, Watts P (2004) Solid-supported continuous flow synthesis in microreactors using electroosmotic flow. Org Process Res Dev 8:942

    Article  CAS  Google Scholar 

  • Overbeek JTG (1952) Electro chemistry of double layer. In: Kruyt HR (ed) Colloid science, Vol. 1. Elsevier, Amsterdam

    Google Scholar 

  • Peterson DS, Rohr T, Svec FK, Frechet JMJ (2003) Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: integrating solid-phase extraction and enzymatic digestion for peptide mass mapping. Anal Chem 75:5328

    Article  CAS  Google Scholar 

  • Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017

    Article  CAS  Google Scholar 

  • Schneider TW, Schessler HM, Shaffer KM, Dumm JM, Younce LA (2001) Surface patterning and adhesion of neuroblastoma X glioma (NG108-15) cells. Biomed Microdev 3 4:315

    Article  Google Scholar 

  • Svec F (2004) Porous monoliths: emerging stationary phases for HPLC and related methods. LC GC Europe 18:17

    Google Scholar 

  • Takagi M, Maki T, Miyahara M, Mae K (2004) Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem Eng J 101:269

    Article  CAS  Google Scholar 

  • Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci USA 96:5545–5548

    Article  CAS  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  • Yang YN, Li C Kameoka J, Lee KH, Craighead HG (2005) A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab Chip 5:869

    Article  CAS  Google Scholar 

  • Zhang X, Hayward DO (2006) Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorg Chim Acta 359:3421

    Article  CAS  Google Scholar 

  • Zhang X, Wiles C, Painter SL, Watts P, Haswell SJ (2006) Microreactors as tools for chemical research. Chim Oggi-Chem Today 24:43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Haswell .

Editor information

P.H. Seeberger T. Blume

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Zhang, X., Haswell, S.J. (2007). Micro-Fluidic and Lab-on-a-Chip Technology. In: Seeberger, P., Blume, T. (eds) New Avenues to Efficient Chemical Synthesis. Ernst Schering Foundation Symposium Proceedings, vol 2006/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_026

Download citation

Publish with us

Policies and ethics