Actions of Estrogen and Estrogen Receptors in Nonclassical Target Tissues

  • E. Murphy
  • K. S. Korach
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/1)


Hormonal effects on classical endocrine target organs such as the female reproductive tract, mammary gland, ovary, and neuroendocrine system have been thoroughly studied, with significant advancements in our understanding of estrogen actions and disease conditions from both cell culture as well as new experimental animal models. Knowledge of the highly appreciated effects of estrogen in nonclassical endocrine organ systems, arising from epidemiological and clinical findings in the cardiovascular, immune, GI tract, and liver, is only now becoming clarified from the development and use of knock-out or transgenic animal models for the study of both estrogen and ER activities. There are considerable epidemiological data showing that premenopausal females (Barrett-Connor 1997; Crabbe et al. 2003) have reduced risk for cardiovascular disease. However, a recent large clinical trial failed to show cardioprotection for postmenopausal females on estrogen–progestin replacement (Rossouw et al. 2002). In fact, the Women's Health Initiative Study showed increased cardiovascular risk for females taking an estrogen–progestin combination. These studies suggest that we need a better understanding of the mechanisms responsible for cardioprotection in females.


Reperfusion Injury Reduce Infarct Size Transverse Aortic Constriction Intact Female Trauma Hemorrhage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Babiker FA, Lips D, Meyer R et al. (2006) Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol 26:1524–1530PubMedCrossRefGoogle Scholar
  2. Bae S, Zhang L (2005) Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther 315:1125–1135PubMedCrossRefGoogle Scholar
  3. Baines CP, Kaiser RA, Purcell NH et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662PubMedCrossRefGoogle Scholar
  4. Barrett-Connor E (1997) Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation 95:252–264PubMedCrossRefGoogle Scholar
  5. Beer S, Reincke M, Kral M et al. (2006) High-dose 17beta-estradiol treatment prevents development of heart failure post-myocardial infarction in the rat. Basic Res Cardiol Jul 4 [Epub ahead of print]Google Scholar
  6. Booth EA, Obeid NR, Lucchesi BR (2005) Activation of estrogen receptor-alpha protects the in vivo rabbit heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 289:H2039–H2047PubMedCrossRefGoogle Scholar
  7. Chen J, Petrank J, Yamamura K et al. (2003) Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 285:H2657–H662PubMedGoogle Scholar
  8. Crabbe DL, Dipla K, Ambati S et al. (2003) Gender differences in post-infarction hypertrophy in end-stage failing hearts. J Am Coll Cardiol 41:300–306PubMedCrossRefGoogle Scholar
  9. Cross HR, Lu L, Steenbergen C et al. (1998) Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 83:1215–1223PubMedCrossRefGoogle Scholar
  10. Cross HR, Steenberger C, Lefkowitz RJ et al. (1999) Overexpression of the cardiac beta-adrenergic receptor and expression of a beta-adrenergic receptor kinase-1 (betaARK1) inhibitor both increase myocardial contractility but have differential effects on susceptibility to ischemic injury. Circ Res 85:1077–1084PubMedCrossRefGoogle Scholar
  11. Cross HR, Murphy E, Koch WJ et al. (2002a) Male and female mice overexpressing the beta-adrenergic receptor exhibit differences in ischemia/reperfusion injury: role of nitric oxide. Cardiovasc Res 53:662–671PubMedCrossRefGoogle Scholar
  12. Cross HR, Murphy E, Steenbergen C (2002b) Ca(2+) loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 283:H481–H489PubMedGoogle Scholar
  13. Cross HR, Kranias EG, Murphy E et al. (2003) Ablation of PLB exacerbates ischemic injury to a lesser extent in female than male mice: protective role of NO. Am J Physiol Heart Circ Physiol 284:H683–H690PubMedGoogle Scholar
  14. Das B, Sarkar C (2006) Similarities between ischemic preconditioning and 17beta-estradiol mediated cardiomyocyte KATP channel activation leading to cardioprotective and antiarrhythmic effects during ischemia/reperfusion in the intact rabbit heart. J Cardiovasc Pharmacol 47:277–286PubMedCrossRefGoogle Scholar
  15. Dash R, Schmidt AG, Pathak A et al. (2003) Differential regulation of p38 mitogen-activated protein kinase mediates gender-dependent catecholamine-induced hypertrophy. Cardiovasc Res 57:704–714PubMedCrossRefGoogle Scholar
  16. Forster C, Kietz S, Hultenby K et al. (2004) Characterization of the ERbeta-/- mouse heart. Proc Natl Acad Sci USA 101:14234–14239PubMedCrossRefGoogle Scholar
  17. Gabel SA, Walker VR, London RE et al. (2005) Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 38:289–297PubMedCrossRefGoogle Scholar
  18. Hsieh YC, Choudhry MA, Yu HP et al. (2006) Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J 20:1109–1117PubMedCrossRefGoogle Scholar
  19. Jazbutyte V, Hu K, Kruchten P et al. (2006) Aging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats. Hypertension 48:579–586PubMedCrossRefGoogle Scholar
  20. Jovanovic S, Jovanovic A, Shen WK et al. (2000) Low concentrations of 17beta-estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading. J Am Coll Cardiol 36:948–952PubMedCrossRefGoogle Scholar
  21. Kadokami T, McTiernan CF, Kubota T et al. (2000) Sex-related survival differences in murine cardiomyopathy are associated with differences in TNF-receptor expression. J Clin Invest 106:589–597PubMedCrossRefGoogle Scholar
  22. Kadokami T, McTiernan CF, Hiquichi Y et al. (2005) 17 Beta-estradiol improves survival in male mice with cardiomyopathy induced by cardiac-specific tumor necrosis factor-alpha overexpression. J Interferon Cytokine Res 25:254–260PubMedCrossRefGoogle Scholar
  23. Kam KW, Qi JS, Chen M et al. (2004) Estrogen reduces cardiac injury and expression of beta1-adrenoceptor upon ischemic insult in the rat heart. J Pharmacol Exp Ther 309:8–15PubMedCrossRefGoogle Scholar
  24. Li Y, Kloner RA (1995) Is there a gender difference in infarct size and arrhythmias following experimental coronary occlusion and reperfusion? J Thromb Thrombolysis 2:221–225PubMedGoogle Scholar
  25. Lobaton CD, Vay L, Hernandez-Sanmiguel E et al. (2005) Modulation of mitochondrial Ca(2+) uptake by estrogen receptor agonists and antagonists. Br J Pharmacol 145:862–871PubMedCrossRefGoogle Scholar
  26. Murphy E, Perlman M, London RE et al. (1991) Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258PubMedCrossRefGoogle Scholar
  27. Nuedling S, Karas RH, Mendelshon ME et al. (2001) Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett 502:103–108PubMedCrossRefGoogle Scholar
  28. Olsson MC, Palmer BM, Leinwand LA et al. (2001) Gender and aging in a transgenic mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 280:H1136–H1144PubMedGoogle Scholar
  29. Parkash J, Felty Q, Roy S (2006) Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry 45:2872–2881PubMedCrossRefGoogle Scholar
  30. Pedram A, Razandi M, Wallace DC et al. (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17:2125–2137PubMedCrossRefGoogle Scholar
  31. Pelzer T, Loza PA, Hu K et al. (2005) Increased mortality and aggravation of heart failure in estrogen receptor-beta knockout mice after myocardial infarction. Circulation 111:1492–1498PubMedCrossRefGoogle Scholar
  32. Peter I, Shearman AM, Vasan RS et al. (2006) Association of estrogen receptor beta gene polymorphisms with left ventricular mass and wall thickness in women. Am J Hypertens 18:1388–1395CrossRefGoogle Scholar
  33. Przyklenk K, Ovize M, Bauer B et al. (1995) Gender does not influence acute myocardial infarction in adult dogs. Am Heart J 129:1108–1113PubMedCrossRefGoogle Scholar
  34. Rossouw JE, Andersson GL, Prentice RL et al. (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288:321–333PubMedCrossRefGoogle Scholar
  35. Schwend T, Gustafsson JA (2006) False positives in MALDI-TOF detection of ERbeta in mitochondria. Biochem Biophys Res Commun 343:707–711PubMedCrossRefGoogle Scholar
  36. Simoncini T, Hafezi-Moghadam A, Brazil DP et al. (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541PubMedCrossRefGoogle Scholar
  37. Skavdahl M, Steenbergen C, Clark J et al. (2005) Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol 288:H469–H476PubMedCrossRefGoogle Scholar
  38. Steenbergen C, Murphy E, Levy L et al. (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707PubMedCrossRefGoogle Scholar
  39. Sugishita K, Su Z, Li F et al. (2001) Gender influences [Ca(2+)](i) during metabolic inhibition in myocytes overexpressing the Na(+)-Ca(2+) exchanger. Circulation 104:2101–2106PubMedCrossRefGoogle Scholar
  40. Sun J, Picht E, Ginsburg KS et al. (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411PubMedCrossRefGoogle Scholar
  41. Van Eickels M, Grohe C, Cleutjens JP et al. (2001) 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423PubMedCrossRefGoogle Scholar
  42. Wang M, Crisostomo P, Wariuko GM et al. (2006) Estrogen receptor-alpha mediates acute myocardial protection in females. Am J Physiol Heart Circ Physiol 290:H2204–H2209PubMedCrossRefGoogle Scholar
  43. Yang SH, Liu R, Perez EJ et al. (2004) Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 101:4130–4135PubMedCrossRefGoogle Scholar
  44. Yu HP, Shimizu T, Choudhry MA et al. (2006) Mechanism of cardioprotection following trauma-hemorrhagic shock by a selective estrogen receptor-beta agonist: up-regulation of cardiac heat shock factor-1 and heat shock proteins. J Mol Cell Cardiol 40:185–194PubMedCrossRefGoogle Scholar
  45. Zhai P, Eurell TE, Cooke PS et al. (2000) Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am J Physiol Heart Circ Physiol 278:H1640–H1647PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratory of Signal TransductionNational Institute of Environmental Health Sciences, National Institute of HealthNorth CarolineUSA
  2. 2.Laboratory of Reproductive and Developmental ToxicologyNational Institute of Environmental Health Sciences, National Institute of HealthNorth CarolineUSA

Personalised recommendations