High Content Screening to Monitor G Protein-Coupled Receptor Internalisation

  • R. Heilker
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/2)


G protein-coupled receptors (GPCRs) fulfil a broad diversity of physiological functions in areas such as neurotransmission, respiration, cardiovascular action, pain and more. Consequently, they are considered as the most successful group of therapeutic targets on the pharmaceutical market, and the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry. High Content Screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently employed tool to study test compound effects in cellular disease modelling systems. One way to functionally analyse the effect of test compounds on GPCRs by HCS relies on the broadly observed phenomenon of desensitisation. Agonist stimulation of most GPCRs leads to their intracellular phosphorylation and subsequent internalisation, resulting in the termination of receptor signalling and the seclusion of the GPCR from further extracellular stimulation. Complementary to other functional GPCR drug discovery assays, GPCR internalisation assays enable a desensitisation-focussed pharmacological analysis of test compounds.


Test Compound Receptor Internalisation Endocytic Vesicle Reference Ligand High Content Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almholt DL, Loechel F, Nielsen SJ, Krog-Jensen C, Terry R, Bjorn SP, Pedersen HC, Praestegaard M, Moller S, Heide M, Pagliaro L, Mason AJ, Butcher S, Dahl SW (2004) Nuclear export inhibitors and kinase inhibitors identified using a MAPK-activated protein kinase 2 redistribution screen. Assay Drug Dev Technol 2:7–20CrossRefPubMedGoogle Scholar
  2. Alouani S (2000) Scintillation proximity binding assay. Methods Mol Biol 138:135–141PubMedGoogle Scholar
  3. Auer M, Moore KJ, Meyer-Almes FJ, Guenther R, Pope AJ, Stoeckli K (1998) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discov Today 3:457–465CrossRefGoogle Scholar
  4. Banks P, Harvey M (2002) Considerations for using fluorescence polarization in the screening of g protein-coupled receptors. J Biomol Screen 7:111–117CrossRefPubMedGoogle Scholar
  5. Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500CrossRefPubMedGoogle Scholar
  6. Bhawe KM, Blake RA, Clary DO, Flanagan PM (2004) An automated image capture and quantitation approach to identify proteins affecting tumor cell proliferation. J Biomol Screen 9:216–222CrossRefPubMedGoogle Scholar
  7. Conway BR, Minor LK, Xu JZ, Gunnet JW, DeBiasio R, D'Andrea MR, Rubin R, DeBiasio R, Giuliano K, DeBiasio L, Demarest KT (1999) Quantification of G-protein coupled receptor internatilization using G-protein coupled receptor-green fluorescent protein conjugates with the ArrayScan high-content screening system. J Biomol Screen 4:75–86CrossRefPubMedGoogle Scholar
  8. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79CrossRefPubMedGoogle Scholar
  9. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964CrossRefPubMedGoogle Scholar
  10. Dupriez VJ, Maes K, Le Poul E, Burgeon E, Detheux M (2002) Aequorin-based functional assays for G-protein-coupled receptors, ion channels, and tyrosine kinase receptors. Receptors Channels 8:319–330CrossRefPubMedGoogle Scholar
  11. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24PubMedGoogle Scholar
  12. Gabriel D, Vernier M, Pfeifer MJ, Dasen B, Tenaillon L, Bouhelal R (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol 1:291–303CrossRefPubMedGoogle Scholar
  13. Ghosh RN, Chen YT, DeBiasio R, DeBiasio RL, Conway BR, Minor LK, Demarest KT (2000) Cell-based, high-content screen for receptor internalization, recycling and intracellular trafficking. Biotechniques 29:170–175PubMedGoogle Scholar
  14. Giuliano KA (2003) High-content profiling of drug–drug interactions: cellular targets involved in the modulation of microtubule drug action by the antifungal ketoconazole. J Biomol Screen 8:125–135CrossRefPubMedGoogle Scholar
  15. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450CrossRefPubMedGoogle Scholar
  16. Haasen D, Schnapp A, Valler MJ, Heilker R (2006a) G protein-coupled receptor internalization assays in the high content screening format. Methods Enzymol 414:121–139CrossRefPubMedGoogle Scholar
  17. Haasen D, Wolff M, Valler MJ, Heilker R (2006b) Comparison of G-protein coupled receptor desensitization-related beta-arrestin redistribution using confocal and non-confocal imaging. Comb Chem High Throughput Screen 9:37–47CrossRefPubMedGoogle Scholar
  18. Harris A, Cox S, Burns D, Norey C (2003) Miniaturization of fluorescence polarization receptor-binding assays using CyDye-labeled ligands. J Biomol Screen 8:410–420CrossRefPubMedGoogle Scholar
  19. Heilker R, Zemanova L, Valler MJ, Nienhaus GU (2005) Confocal fluorescence microscopy for high-throughput screening of G-protein coupled receptors. Curr Med Chem 12:2551–2559CrossRefPubMedGoogle Scholar
  20. Ji TH, Grossmann M, Ji I (1998) G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 273:17299–17302CrossRefPubMedGoogle Scholar
  21. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319CrossRefPubMedGoogle Scholar
  22. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126CrossRefPubMedGoogle Scholar
  23. Li Z, Yan Y, Powers EA, Ying X, Janjua K, Garyantes T, Baron B (2003) Identification of gap junction blockers using automated fluorescence microscopy imaging. J Biomol Screen 8:489–499CrossRefPubMedGoogle Scholar
  24. Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267:8558–8564PubMedGoogle Scholar
  25. Ma P, Zemmel R (2002) Value of novelty? Nat Rev Drug Discov 1:571–572CrossRefPubMedGoogle Scholar
  26. Milligan G (2003) High-content assays for ligand regulation of G-protein-coupled receptors. Drug Discov Today 8:579–585CrossRefPubMedGoogle Scholar
  27. Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814CrossRefPubMedGoogle Scholar
  28. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210CrossRefPubMedGoogle Scholar
  29. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (2001) Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol Chem 276:19452–19460CrossRefPubMedGoogle Scholar
  30. Oakley RH, Hudson CC, Cruickshank RD, Meyers DM, Payne RE, Rhem SM, Loomis CR (2002) The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening of G protein-coupled receptors. Assay Drug Dev Technol 1:21–30CrossRefPubMedGoogle Scholar
  31. Olson KR, Olmsted JB (1999) Analysis of microtubule organization and dynamics in living cells using green fluorescent protein-microtubule-associated protein 4 chimeras. Methods Enzymol 302:103–120CrossRefPubMedGoogle Scholar
  32. Perez DM, Karnik SS (2005) Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 57:147–161CrossRefPubMedGoogle Scholar
  33. Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ (1993) Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 268:3201–3208PubMedGoogle Scholar
  34. Russello SV (2004) Assessing cellular protein phosphorylation: high throughput drug discovery technologies. Assay Drug Dev Technol 2:225–235CrossRefPubMedGoogle Scholar
  35. Simpson PB, Bacha JI, Palfreyman EL, Woollacott AJ, McKernan RM, Kerby J (2001) Retinoic acid evoked-differentiation of neuroblastoma cells predominates over growth factor stimulation: an automated image capture and quantitation approach to neuritogenesis. Anal Biochem 298:163–169CrossRefPubMedGoogle Scholar
  36. Soll DR, Voss E, Johnson O, Wessels D (2000) Three-dimensional reconstruction and motion analysis of living, crawling cells. Scanning 22:249–257CrossRefPubMedGoogle Scholar
  37. Steff AM, Fortin M, Arguin C, Hugo P (2001) Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: an assay amenable to high-throughput screening technologies. Cytometry 45:237–243CrossRefPubMedGoogle Scholar
  38. Sullivan E, Tucker EM, Dale IL (1999) Measurement of [Ca2+] using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol Biol 114:125–133PubMedGoogle Scholar
  39. Taylor DL, Woo ES, Giuliano KA (2001) Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr Opin Biotechnol 12:75–81CrossRefPubMedGoogle Scholar
  40. Wilson T (1990) Confocal microscopy. Academic Press, LondonGoogle Scholar
  41. Wolff M, Haasen D, Merk S, Kroner M, Maier U, Bordel S, Wiedenmann J, Nienhaus GU, Valler MJ, Heilker R (2005) Automated high content screening for phosphoinositide kinase 3 inhibition using an AKT1 redistribution assay. Comb Chem High Throughput Screen 9:339–350CrossRefGoogle Scholar
  42. Xia S, Kjaer S, Zheng K, Hu PS, Bai L, Jia JY, Rigler R, Pramanik A, Xu T, Hokfelt T, Xu ZQ (2004) Visualization of a functionally enhanced GFP-tagged galanin R2 receptor in PC12 cells: constitutive and ligand-induced internalization. Proc Natl Acad Sci USA 101:15207–15212CrossRefPubMedGoogle Scholar
  43. Zemanova L, Schenk A, Valler MJ, Nienhaus GU, Heilker R (2003) Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov Today 8:1085–1093CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Boehringer Ingelheim Pharma GmbH Co. KGDepartment of Lead DiscoveryBiberach an der RissGermany

Personalised recommendations