Virus-Encoded G-Protein-Coupled Receptors: Constitutively Active (Dys)Regulators of Cell Function and Their Potential as Drug Target

  • H. F. Vischer
  • J. W. Hulshof
  • I. J. P. de Esch
  • M. J. Smit
  • R. Leurs
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/2)


G-protein-coupled receptors encoded by herpesviruses such as EBV, HCMV and KSHV are very interesting illustrations of the (patho)physiological importance of constitutive GPCR activity. These viral proteins are expressed on the cell surface of infected cells and often constitutively activate a variety of G-proteins. For some virus-encoded GPCRs, the constitutive activity has been shown to occur in vivo, i.e., in infected cells. In this paper, we will review the occurrence of virus-encoded GPCRs and describe their known signaling properties. Moreover, we will also review the efforts, directed towards the discovery of small molecule antagonist, that so far have been mainly focused on the HCMV-encoded GPCR US28. This virus-encoded receptor might be involved in cardiovascular diseases and cancer and seems an interesting target for drug intervention.


Chemokine Receptor Inverse Agonist HCMV Infection Bicyclic Compound Constitutive Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50CrossRefPubMedGoogle Scholar
  2. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA, Gerhengorn MC (1998) G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89CrossRefPubMedGoogle Scholar
  3. Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, Silverstein RL, Rafii S, Mesri EA (2003) Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3:131–143CrossRefPubMedGoogle Scholar
  4. Bakker RA, Casarosa P, Timmerman H, Smit MJ, Leurs R (2004) Constitutively active Gq/11-coupled Receptors Enable Signaling by Co-expressed Gi/o-coupled Receptors. J Biol Chem 279:5152–5161CrossRefPubMedGoogle Scholar
  5. Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJ, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363PubMedGoogle Scholar
  6. Beisser PS, Grauls G, Bruggeman CA, Vink C (1999) Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230PubMedGoogle Scholar
  7. Beisser PS, Laurent L, Virelizier JL, Michelson S (2001) Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 75:5949–5957CrossRefPubMedGoogle Scholar
  8. Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R, Bruggeman CA, Vink C (2005) The Epstein–Barr Virus BILF1 Gene Encodes a G Protein-Coupled Receptor That Inhibits Phosphorylation of RNA-Dependent Protein Kinase. J Virol 79:441–449CrossRefPubMedGoogle Scholar
  9. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier JL, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866CrossRefPubMedGoogle Scholar
  10. Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137CrossRefPubMedGoogle Scholar
  11. Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003a) Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278:50010–50023CrossRefPubMedGoogle Scholar
  12. Casarosa P, Menge WM, Minisini R, Otto C, van Heteren J, Jongejan A, Timmerman H, Moepps B, Kirchhoff F, Mertens T, Smit MJ, Leurs R (2003b) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 278:5172–5178CrossRefPubMedGoogle Scholar
  13. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869CrossRefPubMedGoogle Scholar
  14. Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17PubMedGoogle Scholar
  15. Cinatl J Jr, Vogel JU, Kotchetkov R, Wilhelm Doerr H (2004) Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev 28:59–77CrossRefPubMedGoogle Scholar
  16. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350PubMedGoogle Scholar
  17. Couty JP, Gershengorn MC (2005) G-protein-coupled receptors encoded by human herpesviruses. Trends Pharmacol Sci 26:405–411CrossRefPubMedGoogle Scholar
  18. Davison AJ, Dargan DJ, Stow ND (2002) Fundamental and accessory systems in herpesviruses. Antiviral Res 56:1–11CrossRefPubMedGoogle Scholar
  19. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28CrossRefPubMedGoogle Scholar
  20. Davis-Poynter NJ, Lynch DM, Vally H, Shellam GR, Rawlinson WD, Barrell BG, Farrell HE (1997) Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529PubMedGoogle Scholar
  21. De Bolle L, Naesens L, De Clercq E (2005) Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18:217–245CrossRefPubMedGoogle Scholar
  22. Diven DG (2001) An overview of poxviruses. J Am Acad Dermatol 44:1–16CrossRefPubMedGoogle Scholar
  23. Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, Griffiths PD, Sinzger C, McSharry BP, Wilkinson GW, Davison AJ (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312CrossRefPubMedGoogle Scholar
  24. Droese J, Mokros T, Hermosilla R, Schulein R, Lipp M, Hopken UE, Rehm A (2004) HCMV-encoded chemokine receptor US28 employs multiple routes for internalization. Biochem Biophys Res Commun 322:42–49CrossRefPubMedGoogle Scholar
  25. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96:4546–4551CrossRefPubMedGoogle Scholar
  26. Ehlers B, Ochs A, Leendertz F, Goltz M, Boesch C, Matz-Rensing K (2003) Novel simian homologues of Epstein-Barr virus. J Virol 77:10695–10699CrossRefPubMedGoogle Scholar
  27. Fitzsimons CP, Gompels UA, Verzijl D, Vischer HF, Mattick C, Leurs R, Smit MJ (2006) Chemokine-directed trafficking of receptor stimulus to different g proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. Mol Pharmacol 69:888–898PubMedGoogle Scholar
  28. Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749PubMedGoogle Scholar
  29. Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232CrossRefPubMedGoogle Scholar
  30. Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–253CrossRefPubMedGoogle Scholar
  31. Gao Z, Metz WA (2003) Unraveling the chemistry of chemokine receptor ligands. Chem Rev 103:3733–3752CrossRefPubMedGoogle Scholar
  32. Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P, Sealfon SC, Lira SA (2006) The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116:1264–1273CrossRefPubMedGoogle Scholar
  33. Gruijthuijsen YK, Casarosa P, Kaptein SJ, Broers JL, Leurs R, Bruggeman CA, Smit MJ, Vink C (2002) The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76:1328–1338CrossRefPubMedGoogle Scholar
  34. Hansen SG, Strelow LI, Franchi DC, Anders DG, Wong SW (2003) Complete sequence and genomic analysis of rhesus cytomegalovirus. J Virol 77:6620–6636CrossRefPubMedGoogle Scholar
  35. Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360:1557–1563CrossRefPubMedGoogle Scholar
  36. Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R (1998) Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273:15687–15692CrossRefPubMedGoogle Scholar
  37. Hulshof JW, Casarosa P, Menge WM, Kuusisto LM, van der Goot H, Smit MJ, de Esch IJ, Leurs R (2005) Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28. J Med Chem 48:6461–6471CrossRefPubMedGoogle Scholar
  38. Isegawa Y, Ping Z, Nakano K, Sugimoto N, Yamanishi K (1998) Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 72:6104–6112PubMedGoogle Scholar
  39. Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G, Kelley K, Schwartz TW, Lira SA (2005) The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J Immunol 174:3686–3694PubMedGoogle Scholar
  40. Kaptein SJ, Beisser PS, Gruijthuijsen YK, Savelkouls KG, van Cleef KW, Beuken E, Grauls GE, Bruggeman CA, Vink C (2003) The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84:2517–2530CrossRefPubMedGoogle Scholar
  41. Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi's sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014PubMedGoogle Scholar
  42. Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Letters 441:209–214CrossRefPubMedGoogle Scholar
  43. Kuhn DE, Beall CJ, Kolattukudy PE (1995) The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 211:325–330CrossRefPubMedGoogle Scholar
  44. Landolfo S, Gariglio M, Gribaudo G, Lembo D (2003) The human cytomegalovirus. Pharmacol Ther 98:269–297CrossRefPubMedGoogle Scholar
  45. Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371CrossRefPubMedGoogle Scholar
  46. Liang M, Rosser M, Ng HP, May K, Bauman JG, Islam I, Ghannam A, Kretschmer PJ, Pu H, Dunning L, Snider RM, Morrissey MM, Hesselgesser J, Perez HD, Horuk R (2000) Species selectivity of a small molecule antagonist for the CCR1 chemokine receptor. Eur J Pharmacol 389:41–49CrossRefPubMedGoogle Scholar
  47. Margulies BJ, Browne H, Gibson W (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225:111–125CrossRefPubMedGoogle Scholar
  48. Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GA, Smit MJ (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103:13068–13073CrossRefPubMedGoogle Scholar
  49. McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3:201–213CrossRefPubMedGoogle Scholar
  50. McGeoch DJ (2001) Molecular evolution of the gamma-Herpesvirinae. Philos Trans R Soc Lond B Biol Sci 356:421–435CrossRefPubMedGoogle Scholar
  51. McMaster BE, Schall TJ, Penfold M, Wright JJ, Dairaghi DJ (2003a) Arylamines as inhibitors of chemokine binding to US28. World (PTC) Patent WO03020029Google Scholar
  52. McMaster BE, Schall TJ, Penfold M, Wright JJ, Dairaghi DJ (2003b) Bicyclic compounds as inhibitors of chemokine binding to US28. World (PTC) Patent WO03018549Google Scholar
  53. Melnychuk RM, Smith P, Kreklywich CN, Ruchti F, Vomaske J, Hall L, Loh L, Nelson JA, Orloff SL, Streblow DN (2005) Mouse cytomegalovirus M33 is necessary and sufficient in virus-induced vascular smooth muscle cell migration. J Virol 79:10788–10795CrossRefPubMedGoogle Scholar
  54. Michel D, Milotic I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T (2005) The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 86:297–306CrossRefPubMedGoogle Scholar
  55. Middeldorp JM, Brink AA, van den Brule AJ, Meijer CJ (2003) Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 45:1–36CrossRefPubMedGoogle Scholar
  56. Milne RS, Mattick C, Nicholson L, Devaraj P, Alcami A, Gompels UA (2000) RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol 164:2396–2404PubMedGoogle Scholar
  57. Minisini R, Tulone C, Luske A, Michel D, Mertens T, Gierschik P, Moepps B (2003) Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501CrossRefPubMedGoogle Scholar
  58. Mocarski ES, Courcelle CT (2001) Cytomegalovirus and their replication. In: Knipe D, Howley P (eds) Field's virology. Lippincott, Williams and Wilkins, Philadelphia, pp 2629–2673Google Scholar
  59. Mokros T, Rehm A, Droese J, Oppermann M, Lipp M, Hopken UE (2002) Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem 277:45122–45128CrossRefPubMedGoogle Scholar
  60. Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS (2001) The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648PubMedGoogle Scholar
  61. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36CrossRefPubMedGoogle Scholar
  62. Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET, Gutkind JS (2006) The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer Res 66:168–174CrossRefPubMedGoogle Scholar
  63. Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229CrossRefPubMedGoogle Scholar
  64. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176PubMedGoogle Scholar
  65. Najarro P, Lee HJ, Fox J, Pease J, Smith GL (2003) Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. J Gen Virol 84:3325–3336CrossRefPubMedGoogle Scholar
  66. Najarro P, Gubser C, Hollinshead M, Fox J, Pease J, Smith GL (2006) Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. J Gen Virol 87:809–816CrossRefPubMedGoogle Scholar
  67. Nakano K, Tadagaki K, Isegawa Y, Aye MM, Zou P, Yamanishi K (2003) Human herpesvirus 7 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 77:8108–8115CrossRefPubMedGoogle Scholar
  68. Offermanns S (2003) G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol 83:101–130CrossRefPubMedGoogle Scholar
  69. Oliveira SA, Shenk TE (2001) Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci USA 98:3237–3242CrossRefPubMedGoogle Scholar
  70. Onuffer JJ, Horuk R (2002) Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci 23:459–467CrossRefPubMedGoogle Scholar
  71. Oster B, Hollsberg P (2002) Viral gene expression patterns in human herpesvirus 6B-infected T cells. J Virol 76:7578–7586CrossRefPubMedGoogle Scholar
  72. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN (2005) Epstein–Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79:536–546CrossRefPubMedGoogle Scholar
  73. Penfold ME, Schmidt TL, Dairaghi DJ, Barry PA, Schall TJ (2003) Characterization of the rhesus cytomegalovirus US28 locus. J Virol 77:10404–10413CrossRefPubMedGoogle Scholar
  74. Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon M (1997) Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276:1874–1878CrossRefPubMedGoogle Scholar
  75. Ray N, Doms RW (2006) HIV-1 coreceptors and their inhibitors. Curr Top Microbiol Immunol 303:97–120CrossRefPubMedGoogle Scholar
  76. Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW (1999) Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-J. Biol Chem 274:956–961CrossRefGoogle Scholar
  77. Sahagun-Ruiz A, Sierra-Honigmann AM, Krause P, Murphy PM (2004) Simian Cytomegalovirus Encodes Five Rapidly Evolving Chemokine Receptor Homologues. Virus Genes 28:71–83CrossRefPubMedGoogle Scholar
  78. Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170:998–1002CrossRefPubMedGoogle Scholar
  79. Schall TJ, McMaster BE, Dairaghi DJ (2002a) Modulators of USWorld (PTC) Patent WO0217900Google Scholar
  80. Schall TJ, McMaster BE, Dairaghi DJ (2002b) Reagents and methods for the diagnosis of CMV dissemination. World (PTC) Patent WO0217969Google Scholar
  81. Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R (2002) Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J Virol 76:1744–1752CrossRefPubMedGoogle Scholar
  82. Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259:219–246CrossRefPubMedGoogle Scholar
  83. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60:4873–4880PubMedGoogle Scholar
  84. Sodhi A, Montaner S, Gutkind JS (2004a) Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5:998–1012CrossRefPubMedGoogle Scholar
  85. Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA, Sawai ET, Gutkind JS (2004b) Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101:4821–4826CrossRefPubMedGoogle Scholar
  86. Stassen FR, Vega-Cordova X, Vliegen I, Bruggeman CA (2006) Immune activation following cytomegalovirus infection: more important than direct viral effects in cardiovascular disease? J Clin Virol 35:349–353CrossRefPubMedGoogle Scholar
  87. Streblow DN, Nelson JA (2003) Models of HCMV latency and reactivation. Trends Microbiol 11:293–295CrossRefPubMedGoogle Scholar
  88. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520CrossRefPubMedGoogle Scholar
  89. Streblow DN, Kreklywich CN, Smith P, Soule JL, Meyer C, Yin M, Beisser P, Vink C, Nelson JA, Orloff SL (2005) Rat cytomegalovirus-accelerated transplant vascular sclerosis is reduced with mutation of the chemokine-receptor R33. Am J Transplant 5:436–442CrossRefPubMedGoogle Scholar
  90. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 73:2232–2242PubMedGoogle Scholar
  91. Tadagaki K, Nakano K, Yamanishi K (2005) Human herpesvirus 7 open reading frames U12 and U51 encode functional beta-chemokine receptors. J Virol 79:7068–7076CrossRefPubMedGoogle Scholar
  92. Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10:803–821CrossRefPubMedGoogle Scholar
  93. Thorley-Lawson DA (2005) EBV the prototypical human tumor virus--just how bad is it? J Allergy Clin Immunol 116:251–261CrossRefPubMedGoogle Scholar
  94. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337CrossRefPubMedGoogle Scholar
  95. Verzijl D, Fitzsimons CP, Van Dijk M, Stewart JP, Timmerman H, Smit MJ, Leurs R (2004) Differential activation of murine herpesvirus 68- and Kaposi's sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol 78:3343–3351CrossRefPubMedGoogle Scholar
  96. Vieira J, Schall TJ, Corey L, Geballe AP (1998) Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72:8158–8165PubMedGoogle Scholar
  97. Vischer HF, Leurs R, Smit MJ (2006a) HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol Sci 27:56–63CrossRefPubMedGoogle Scholar
  98. Vischer HF, Vink C, Smit MJ (2006b) A viral conspiracy: hijacking the chemokine system through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol 303:121–154CrossRefPubMedGoogle Scholar
  99. Waldhoer M, Kledal TN, Farrell H, Schwartz TW (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168CrossRefPubMedGoogle Scholar
  100. Wang F, Rivailler P, Rao P, Cho Y (2001) Simian homologues of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356:489–497CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. F. Vischer
    • 1
  • J. W. Hulshof
    • 1
  • I. J. P. de Esch
    • 1
  • M. J. Smit
    • 1
  • R. Leurs
    • 1
  1. 1.Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal ChemistryFaculty of Sciences, Vrije Universiteit AmsterdamHV AmsterdamThe Netherlands

Personalised recommendations