The Role of GPCR Dimerisation/Oligomerisation in Receptor Signalling

  • G. Milligan
  • M. Canals
  • J. D. Pediani
  • J. Ellis
  • J. F. Lopez-Gimenez
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/2)


A wide range of techniques have been employed to examine the quaternary structure of G-protein-coupled receptors (GPCRs). Although it is well established that homo-dimerisation is common, recent studies have sought to explore the physical basis of these interactions and the role of dimerisation in signal transduction. Growing evidence hints at the existence of higher-order organisation of individual GPCRs and the potential for hetero-dimerisation between pairs of co-expressed GPCRs. Here we consider how both homo-dimerisation/oligomerisation and hetero-dimerisation can regulate signal transduction through GPCRs and the potential consequences of this for function of therapeutic medicines that target GPCRs. Hetero-dimerisation is not the sole means by which co-expressed GPCRs may regulate the function of one another. Heterologous desensitisation may be at least as important and we also consider if this can be the basis for physiological antagonism between pairs of co-expressed GPCRs.

Although there may be exceptions (Meyer et al. 2006), a great deal of recent evidence has indicated that most G-protein-coupled receptors (GPCRs) do not exist as monomers but rather as dimers or, potentially, within higher-order oligomers (Milligan 2004b; Park et al. 2004). Support for such models has been provided by a range of studies employing different approaches, including co-immunoprecipitation of differentially epitope-tagged but co-expressed forms of the same GPCR, co-operativity in ligand binding and a variety of resonance energy transfer techniques (Milligan and Bouvier 2005). Only for the photon receptor rhodopsin has the organisational structure of a GPCR been studied in situ. The application of atomic force microscopy to murine rod outer segment discs indicated that rhodopsin is organised in a series of parallel arrays of dimers (Liang et al. 2003) and based on this, molecular models were constructed to try to define and interpret regions of contact between the monomers (Fotiadis et al. 2004). Only for relatively few other GPCRs are details of the molecular basis of dimerisation available but within this limited data set, recent studies on the dopamine D2 receptor suggest a means by which information on the binding of an agonist can be transmitted between the two elements of the dimer via the dimer interface (Guo et al. 2005).

Although the availability of cDNAs encoding molecularly defined GPCRs has allowed high-throughput screening for ligands that modulate GPCR function, this is performed almost exclusively in heterologous cell lines transfected to express only the specific GPCR of interest. Given that the human genome contains some 400–450 genes encoding non-chemosensory GPCRs, it is clear that any individual cell of the body may express a considerable number of GPCRs. Interactions between these, either via hetero-dimerisation, via heterologous desensitisation or via the integration of downstream signals can potentially alter the pharmacology, sensitivity and function of receptor agonists and hence produce varied responses. In this article, we will use specific examples to consider the role of homo-dimerisation/oligomerisation in GPCR function and whether either direct hetero-dimerisation or heterologous desensitisation between pairs of co-expressed GPCRs affects the function of the receptor pairs.


Fluorescence Resonance Energy Transfer Yellow Fluorescent Protein Cyan Fluorescent Protein Fluorescence Resonance Energy Transfer Signal Heterologous Desensitisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 88:11354–11358CrossRefPubMedGoogle Scholar
  2. Canals M, Jenkins L, Kellett E, Milligan G (2006) Up-regulation of the angiotensin II AT1 receptor by the Mas proto-oncogene is due to constitutive activation of Gq/G11 by Mas. J Biol Chem 281:16767–16767CrossRefGoogle Scholar
  3. Carrillo JJ, Stevens PA, Milligan G (2002) Measurement of agonist-dependent and -independent signal initiation of α1b-adrenoceptor mutants by direct analysis of guanine nucleotide exchange on the G protein Gα11. J Pharmacol Exp Ther 302:1080–1088CrossRefPubMedGoogle Scholar
  4. Carrillo JJ, Pediani J, Milligan G (2003) Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J Biol Chem 278:42578–42587CrossRefPubMedGoogle Scholar
  5. Carrillo JJ, Lopez-Gimenez JF, Milligan G (2004) Multiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor. Mol Pharmacol 66:1123–1137CrossRefPubMedGoogle Scholar
  6. Ellis J, Pediani J, Milasta S, Milligan G (2006) Orexin-1 receptor-cannabinoid CB1 receptor hetero-dimerization results in both ligand-dependent and-independent co-ordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824Google Scholar
  7. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288CrossRefPubMedGoogle Scholar
  8. Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 102:17495–17500CrossRefPubMedGoogle Scholar
  9. Ianoul A, Grant DD, Rouleau Y, Bani-Yaghoub M, Johnston LJ, Pezacki JP (2005) Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol 1:196–202CrossRefPubMedGoogle Scholar
  10. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton P, Gembardt F, Kellett E, Martini L, Vanderheyden P, Schultheiss HP, Walther T (2005) G protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813CrossRefPubMedGoogle Scholar
  11. Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol 141:340–346CrossRefPubMedGoogle Scholar
  12. Leterrier C, Bonnard D, Carrel D, Rossier J, Lenkei Z (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021CrossRefPubMedGoogle Scholar
  13. Leterrier C, Laine J, Darmon M, Boudin H, Rossier J, Lenkei Z (2006) Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 26:3141–3153CrossRefPubMedGoogle Scholar
  14. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662CrossRefPubMedGoogle Scholar
  15. Meyer BH, Segura J-M, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci USA 103:2138–2143CrossRefPubMedGoogle Scholar
  16. Milligan G (2004a) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 21:397–405CrossRefPubMedGoogle Scholar
  17. Milligan G (2004b) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7CrossRefPubMedGoogle Scholar
  18. Milligan G (2005) The molecular basis of dimerisation of family A G protein-coupled receptors. In: Lundstrom K, Chui M (eds) GPCRs in drug discovery. Marcel Dekker, pp 329–340Google Scholar
  19. Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925CrossRefGoogle Scholar
  20. Pietila EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petaja-Repo UE (2005) Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface. J Biol Chem 280:26622–26629CrossRefPubMedGoogle Scholar
  21. Qian H, Pipolo L, Thomas WG (1999) Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor. Biochem J 343:637–644CrossRefPubMedGoogle Scholar
  22. Rinaldi-Carmona M, Le Duigou A, Oustric D, Barth F, Bouaboula M, Carayon P, Casellas P, Le Fur G (1998) Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 87:1038–1047Google Scholar
  23. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT. Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMedGoogle Scholar
  24. Smith RD, Hunyady L, Olivares-Reyes JA, Mihalik B, Jayadev S, Catt KJ (1998) Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail. Mol Pharmacol 54:935–941PubMedGoogle Scholar
  25. Stanasila L, Perez JB, Vogel H, Cotecchia S (2003) Oligomerization of the alpha 1a- and alpha 1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem 278:40239–40251CrossRefPubMedGoogle Scholar
  26. Uberti MA, Hall RA, Minneman KP (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 64:1379–1390CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G. Milligan
    • 1
  • M. Canals
    • 1
  • J. D. Pediani
    • 1
  • J. Ellis
    • 1
  • J. F. Lopez-Gimenez
    • 1
  1. 1.Molecular Pharmacology GroupDivision of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of GlasgowGlasgowScotland, UK

Personalised recommendations