Modeling GPCRs

  • A. C. M. Paiva†
  • L. Oliveira
  • F. Horn†
  • R. P. Bywater
  • G. Vriend
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/2)


Many GPCR models have been built over the years for many different purposes, of which drug-design undoubtedly has been the most frequent one. The release of the structure of bovine rhodopsin in August 2000 enabled us to analyze models built before that period to learn things for the models we build today. We conclude that the GPCR modeling field is riddled with “common knowledge”. Several characteristics of the bovine rhodopsin structure came as a big surprise, and had obviously not been predicted, which led to large errors in the models. Some of these surprises, however, could have been predicted if the modelers had more rigidly stuck to the rule that holds for all models, namely that a model should explain all experimental facts, and not just those facts that agree with the modeler's preconceptions.


Transmembrane Helix Residue Numbering System Bovine Rhodopsin Structure Superposition Ocular Albinism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The GPCRDB was initiated as an EC sponsored project (PL 950224). GV acknowledges financial support from BioRange and BioSapiens. The BioSapiens project is funded by the European Commission within its FP6 Programme, under the thematic area “Life sciences, genomics and biotechnology for health,” contract number LSHG-CT-2003–503265. BioRange is a programme of the Netherlands Bioinformatics Centre (NBIC), which is supported by a BSIK grant through the Netherlands Genomics Initiative (NGI).


  1. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159CrossRefPubMedGoogle Scholar
  2. Ballesteros JA, Weinstein H (1995) Integrated methods for modeling G-protein coupled receptors. Methods Neurosci 25:366–428CrossRefGoogle Scholar
  3. Ballesteros JA, Shi L, Javitch JA (2001) Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol Pharmacol 60:1–19PubMedGoogle Scholar
  4. Beukers MW, Kristiansen I, Ijzerman AP, Edvardsen O (1999) TinyGRAP data-base: a bioinformatics tool to mine G protein-coupled receptor mutant data. TiPS 1999 20:475–477Google Scholar
  5. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995CrossRefPubMedGoogle Scholar
  6. Bramblett RD, Panu AM, Ballesteros JA, Reggio PH (1995) Construction of a 3D model of the cannabinoid CB1 receptor: determination of helix ends and helix orientation. Life Sci 56:1971–1982CrossRefPubMedGoogle Scholar
  7. Bywater RP (2005) Location and nature of the residues important for ligand recognition in G Protein-coupled receptors. J Mol Recognit 18:60–72CrossRefPubMedGoogle Scholar
  8. Campagne F, Bettler E, Vriend G, Weinstein H (2003) Batch mode generation of residue-based diagrams of proteins. Bioinformatics 19:1854–1855CrossRefPubMedGoogle Scholar
  9. Chung DA, Zuiderweg ER, Fowler CB, Soyer OS, Mosberg HI, Neubig RR (2002) NMR structure of the second intracellular loop of the alpha 2A adrenergic receptor: evidence for a novel cytoplasmic helix. Biochemistry 41:3596–3604CrossRefPubMedGoogle Scholar
  10. Church WB, Jones KA, Kuiper DA, Shine J, Iismaa TP (2002) Molecular modelling and site-directed mutagenesis of human GALR1 galanin receptor defines determinants of receptor subtype specificity. Protein Eng 5:313–323CrossRefGoogle Scholar
  11. Cochrane G, Adelbert P, Althorpe N et al. (2006) EMBL Nucleotide Sequence Database: developments in 2005. Nucleic Acids Res 34:D10–D15CrossRefPubMedGoogle Scholar
  12. Cronet P, Sander C, Vriend G (1993) Modelling of transmembrane seven helix bundles. Protein Eng 6:59–64CrossRefPubMedGoogle Scholar
  13. Donnelly D, Overington JP, Ruffle SV, Nugent JH, Blundell TL (1993) Modelling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Protein Sci 2:55–70PubMedGoogle Scholar
  14. Filizola M, Perez JJ, Carteni-Farina M (1998) BUNDLE: a program for building the transmembrane domains of G protein-coupled receptors. J Comput Aided Mol Des 12:111–118CrossRefPubMedGoogle Scholar
  15. Gether U, Kobilka BK (1998) G Protein receptor activation: II. Mechanism of agonist activation. J Biol Chem 273:17979–17982CrossRefPubMedGoogle Scholar
  16. Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA (2004) Toward the active conformations of rhodopsin and beta-2-adrenergic receptor. Proteins 56:67–84CrossRefPubMedGoogle Scholar
  17. Henderson R, Schertler GFX (1990) The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G protein-coupled receptors. Philos Trans R Soc Lond B Biol Sci 326:379–389CrossRefPubMedGoogle Scholar
  18. Herzyk P, Hubbard RE (1998) Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin. J Mol Biol 281:741–754CrossRefPubMedGoogle Scholar
  19. Horn F, Weare J, Beukers MW, Horsch S, Bairoch A, Chen W, Edvardsen O, Campagne F, Vriend G (1998) GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 26:275–279CrossRefPubMedGoogle Scholar
  20. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 31:294–297CrossRefPubMedGoogle Scholar
  21. Horn F, Lau AL, Cohen FE (2004) Automated extraction of mutation data from the literature: application of MuteXt to G protein-coupled receptors and nuclear hormone receptors. Bioinformatics 20:557–568CrossRefPubMedGoogle Scholar
  22. Javitch JA, Ballesteros JA, Weinstein H, Chen J (1998) A cluster of aromatic residues in the sixth membrane-spanning segment of the D2 receptor is accessible to the binding-site crevice. Biochemistry 37:998–1006CrossRefPubMedGoogle Scholar
  23. Johansson K (1999) Bioinformatics practical. Cited 24 November 2006Google Scholar
  24. Kuipers W, Van Wijngaarden I, Ijzerman AP (1994) A model of the serotonin 5-HT1A receptor: agonist and antagonist binding sites. Drug Des Discov 11:231–249PubMedGoogle Scholar
  25. Kuipers W, Oliveira L, Paiva ACM, Rippmann F, Sander C, Vriend G, Ijzerman AP (1996) Sequence-function correlation in G protein-coupled receptors. In: Findlay JBC (ed) Membrane protein models. BIOS Scientific, OxfordGoogle Scholar
  26. Kuipers W, Oliveira L, Vriend G, IJzerman AP (1997) Identification of class-determining residues in G protein-coupled receptors by sequence analysis. Receptors Channels 5:159–174PubMedGoogle Scholar
  27. Lequin O, Bolbach G, Frank F, Convert O, Girault-Lagrange S, Chassaing G, Lavielle S, Sagan S (2002) Involvement of the second extracellular loop (E2) of the neurokinin-1 receptor in the binding of substance P. Photoaffinity labeling and modeling studies. J Biol Chem 277:22386–22394CrossRefPubMedGoogle Scholar
  28. Lopez-Rodriguez ML, Murcia M, Benhamu B, Olivella M, Campillo M, Pardo L (2001) Computational model of the complex between GR113808 and the 5-HT4 receptor guided by site-directed mutagenesis and the crystal structure of rhodopsin. J Comput Aided Mol Des 15:1025–1033CrossRefPubMedGoogle Scholar
  29. Lopez-Rodriguez ML, Vicente B, Deupi X, Barrondo S, Olivella M, Morcillo MJ, Behamu B, Ballesteros JA, Salles J, Pardo L (2002) Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine(1a) receptor ligands to explore the three-dimensional structure of the receptor. Mol Pharmacol 62:15–21CrossRefPubMedGoogle Scholar
  30. Luecke H, Richter HT, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280:1934–1937CrossRefPubMedGoogle Scholar
  31. Mehler EL, Periole X, Hassan SA, Weinstein H (2002) Key issues in the computational simulation of GPCR function: representation of loop domains. J Comput Aided Mol Des 16:841–853CrossRefPubMedGoogle Scholar
  32. Oliveira L, Paiva ACM, Vriend G (1993) A common motif in G protein-coupled seven transmembrane helix receptors. J Comput Aided Mol Des 7:649–658CrossRefGoogle Scholar
  33. Oliveira L, Paiva ACM, Vriend G (1999) A low resolution model for the interaction of G proteins with G protein-coupled receptors. Prot Eng 12:1087–1095CrossRefGoogle Scholar
  34. Oliveira L, Paiva PB, Paiva AC, Vriend G (2003a) Identification of functionally conserved residues with the use of entropy-variability plots. Proteins 52:544–552CrossRefPubMedGoogle Scholar
  35. Oliveira L, Paiva PB, Paiva AC, Vriend G (2003b) Sequence analysis reveals how G protein-coupled receptors transduce the signal to the G protein. Proteins 52:553–560CrossRefPubMedGoogle Scholar
  36. Orry AJW, Wallace BA (2000) Modelling and docking the endothelin G protein-coupled receptor. Biophys J 79:3083:3094CrossRefPubMedGoogle Scholar
  37. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745CrossRefPubMedGoogle Scholar
  38. Pardo L, Ballesteros JA, Osman R, Weinstein H (1992) On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. PNAS 89:4009-4012CrossRefPubMedGoogle Scholar
  39. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipid cubic phases. Science 277:1676–1681CrossRefPubMedGoogle Scholar
  40. Pellegrini M, Bremer AA, Ulfers AL, Boyd ND, Mierke DF (2001) Molecular characterization of the substance P*neurokinin-1 receptor complex: development of an experimentally based model. J Biol Chem 276:22862–22867CrossRefPubMedGoogle Scholar
  41. Pogozheva ID, Lomize AL, Mosberg HI (1997) The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J 72:1963–1985CrossRefPubMedGoogle Scholar
  42. Protein Structure Prediction Center (2006) Cited 24 November 2006Google Scholar
  43. Prusis P, Schiöth HB, Muceniece R, Herzyk P, Afshar M, Hubbard RE, Wikberg JES (1997) Modelling of the three-dimensional structure of the human melanocortin 1 receptor, using an automated method and docking of a rigid cyclic melanocyte stimulating hormone core peptide. J Mol Graph Model 15:307–315CrossRefPubMedGoogle Scholar
  44. Rippmann F, Bottcher E (1993) Molecular modelling of serotonin receptors. 7TM 3:1–27Google Scholar
  45. Schadel SA, Heck M, Maretzki D, Filipek S, Teller DC, Palczewski K, Hofmann KP (2003) Ligand channeling within a G-protein-coupled receptor. The entry and exit of retinals in native opsin. J Biol Chem 278:24896–24903CrossRefPubMedGoogle Scholar
  46. Schertler GF (2005) Structure of rhodopsin and the metarhodopsin I photointermediate. Curr Opin Struct Biol 15:408–415CrossRefPubMedGoogle Scholar
  47. Schertler GFX, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. PNAS 192:11578–11582CrossRefGoogle Scholar
  48. Schertler GF, Villa C, Henderson R (1993) Projection structure of rhodopsin. Nature 362:770–772CrossRefPubMedGoogle Scholar
  49. Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467CrossRefPubMedGoogle Scholar
  50. Shim JY, Welsh WJ, Howlett AC (2003) Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction. Biopolymers 71:169–189CrossRefPubMedGoogle Scholar
  51. Szundi I, Ruprecht JJ, Epps J, Villa C, Swartz TE, Lewis JW, Schertler GF, Kliger DS (2006) Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. Biochemistry 45:4974–4982CrossRefPubMedGoogle Scholar
  52. Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol 283:463–474CrossRefPubMedGoogle Scholar
  53. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G protein-coupled receptors. Biochemistry 40:7761–7772CrossRefPubMedGoogle Scholar
  54. Unger VM, Schertler GFX (1995) Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J 68:1776–1786CrossRefPubMedGoogle Scholar
  55. Unger VM, Hargrave PA, Baldwin JM, Schertler GFX (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389:203–206CrossRefPubMedGoogle Scholar
  56. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA 3rd (2002) Prediction of structure and function of G protein-coupled receptors. PNAS 2002 99:12622–12627CrossRefGoogle Scholar
  57. Venclovas C, Zemla A, Fidelis K, Moult J (2001) Comparison of performance in successive CASP experiments. Proteins Suppl 5:163–170CrossRefGoogle Scholar
  58. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56CrossRefPubMedGoogle Scholar
  59. Wang Z, Asenjo AB, Oprian DD (1993) Identification of the Cl-binding site in the human red and green colour vision pigments. Biochemistry 32:2125–2130CrossRefPubMedGoogle Scholar
  60. Watson S, Arkinstall S. The G-protein linked receptor Facts Book. 1994, Academic Press Ltd, ISBN 0-12-738440-5Google Scholar
  61. Yang X, Wang Z, Dong W, Ling L, Yang H, Chen R (2003) Modeling and docking of the three-dimensional structure of the human melanocortin 4 receptor. J Protein Chem 22:335–344CrossRefPubMedGoogle Scholar
  62. Yeagle PL, Alderfer JL, Albert AD (1995) Structure of the third cytoplasmic loop of bovine rhodopsin. Biochemistry 34:14621–14625CrossRefPubMedGoogle Scholar
  63. Yeagle PL, Alderfer JL, Albert AD (1996) Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Mol Vis 2:12–19PubMedGoogle Scholar
  64. Yeagle PL, Alderfer JL, Salloum AC, Ali L, Albert AD (1997) The first and second cytoplasmic loops of the G protein-receptor, rhodopsin, independently form betaturns. Biochemistry 36:3864–3869CrossRefPubMedGoogle Scholar
  65. Yeagle PL, Salloum A, Chopra A, Bhawsar N, Ali L, Kuzmanovski G, Alderfer JL, Albert AD (2000) Structures of the intradiskal loops and amino terminus of the G-protein receptor, rhodopsin. J Pept Res 55:455–465CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. C. M. Paiva†
    • 1
  • L. Oliveira
    • 1
  • F. Horn†
    • 2
  • R. P. Bywater
    • 3
  • G. Vriend
    • 4
  1. 1.Escola Paulista de MedicinaSao PauloBrazil
  2. 2.Laboratoire de BiologieInformatique et Math\'ematiquesGrenobleFrance
  3. 3.Magdalen CollegeOxfordEngland
  4. 4.CMBI NCMLSUMCGA NijmegenThe Netherlands

Personalised recommendations