Advances in Understanding the Auditory Brain of Songbirds

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 49)

Abstract

Songbirds, like humans, have the ability to memorize and learn auditory input in order to shape their own vocalization. Such abilities imply that the songbird brain, not unlike the human brain, is built to process and discriminate complex sounds.

In this chapter, the strategy that songbirds use to learn their songs is reviewed, highlighting its dependence on auditory feedback for successful song learning. The elements of birdsong are explained, followed by a short description of analytical tools commonly used by songbird neurophysiologists to analyze auditory-driven neural spiking responses. These tools are used to discuss the patterns of auditory processing that occur in the songbird’s brain, beginning with the auditory midbrain and thalamic structures that are common to all birds and moving up to the primary and secondary auditory areas in the songbird cerebrum involved in the discrimination of behaviorally relevant complex sounds in birdsong.

Keywords

Auditory cortex Auditory feedback Auditory processing Caudal mesopallium Dorsal lateral nucleus of the mesencephalon Field L Neurophysiology Nidopallium caudal medial Ovoidalis Perturbation Song learning Songbird Spectrotemporal receptive fields Template theory Zebra finch 

References

  1. Akutagawa, E., & Konishi, M. (2010). New brain pathways found in the vocal control system of a songbird. The Journal of Comparative Neurology, 518(15), 3086–3100.PubMedCrossRefGoogle Scholar
  2. Amin, N., Grace, J. A., & Theunissen, F. E. (2004). Neural response to bird’s own song and tutor song in the zebra finch field L and caudal mesopallium. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(6), 469–489.Google Scholar
  3. Amin, N., Doupe, A. J., & Theunissen, F. E. (2007). Development of selectivity for natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 97(5), 3517–3531.PubMedCrossRefGoogle Scholar
  4. Amin, N., Gill, P., & Theunissen, F. E. (2010). Role of the zebra finch auditory thalamus in generating complex representations for natural sounds. Journal of Neurophysiology, 104(2), 784–798.PubMedCrossRefGoogle Scholar
  5. Aronov, D., Andalman, A. S., & Fee, M. S. (2008). A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science, 320(5876), 630–634.PubMedCrossRefGoogle Scholar
  6. Atiani, S., Elhilali, M., David, Stephen V, Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61(3), 467–480.Google Scholar
  7. Bar-Yosef, O., & Nelken, I. (2007). The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Frontiers in Computational Neuroscience, 1(November), 3.Google Scholar
  8. Bauer, E. E., Coleman, M. J., Roberts, T. F., Roy, A., Prather, J. F., & Mooney, R. (2008). A synaptic basis for auditory-vocal integration in the songbird. The Journal of Neuroscience, 28(6), 1509–1522.PubMedCrossRefGoogle Scholar
  9. Biederman-Thorson, M. (1970). Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Research, 24(2), 235–245.PubMedCrossRefGoogle Scholar
  10. Bigalke-Kunz, B., Rübsamen, R., & Dörrscheidt, G. J. (1987). Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161(2), 255–265.Google Scholar
  11. Blättler, F., & Hahnloser, R. H. R. (2011). An efficient coding hypothesis links sparsity and selectivity of neural responses. PLoS ONE, 6(10), e25506.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M., & Van Der Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97(5), 2282–2285.PubMedCrossRefGoogle Scholar
  13. Boumans, T., Gobes, S. M. H., Poirier, C., Theunissen, F. E., Vandersmissen, L., Pintjens, W., Verhoye, M., Bolhuis, J. J., & Van der Londen, A. (2008). Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity. PLoS ONE, 3(9), e3184.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Brainard, M. S., & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351–358.PubMedCrossRefGoogle Scholar
  15. Brenowitz, E. A. (2002). Birdsong: Integrating physics, physiology, and behavior. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 188(11–12), 827–828.Google Scholar
  16. Brenowitz, E. A., & Beecher, M. D. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neurosciences, 28(3), 127–132.PubMedCrossRefGoogle Scholar
  17. Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations (2nd ed.). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  18. Chew, S. J., Mello, C. V., Nottebohm, F. N., Jarvis, E. D., & Vicario, D. S. (1995). Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proceedings of the National Academy of Sciences of the USA, 92(8), 3406–3410.PubMedCrossRefGoogle Scholar
  19. Chew, S. J., Vicario, D. S., & Nottebohm, F. N. (1996). A large-capacity memory system that recognizes the calls and songs of individual birds. Proceedings of the National Academy of Sciences of the USA, 93(5), 1950–1955.PubMedCrossRefGoogle Scholar
  20. Christianson, G. B., Sahani, M., & Linden, J. F. (2011). Depth-dependent temporal response properties in core auditory cortex. Journal of Neuroscience, 31(36), 12837–12848.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Clayton, N. S. (1989). The effects of cross-fostering on selective song learning in estrildid finches. Behaviour, 109(3), 163–175.CrossRefGoogle Scholar
  22. Doupe, A. J. (1997). Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. The Journal of Neuroscience, 17(3), 1147–1167.PubMedGoogle Scholar
  23. Durand, S. E., Tepper, J. M., & Cheng, M. F. (1992). The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus. The Journal of Comparative Neurology, 323(4), 495–518.PubMedCrossRefGoogle Scholar
  24. Eggermont, J. J. (2006). Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. Journal of Neurophysiology, 96(2), 746–764.PubMedGoogle Scholar
  25. Fortune, E. S., & Margoliash, D. (1992). Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). The Journal of Comparative Neurology, 325(3), 388–404.PubMedCrossRefGoogle Scholar
  26. Fortune, E. S., & Margoliash, D. (1995). Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). The Journal of Comparative Neurology, 360(3), 413–441.PubMedCrossRefGoogle Scholar
  27. Foster, E. F., & Bottjer, S. W. (1998). Axonal connections of the high vocal center and surrounding cortical regions in juvenile and adult male zebra finches. The Journal of Comparative Neurology, 397(1), 118–138.PubMedCrossRefGoogle Scholar
  28. Gentner, T. Q. (2004). Neural systems for individual song recognition in adult birds. Annals of the New York Academy of Sciences, 1016, 282–302.PubMedCrossRefGoogle Scholar
  29. Gentner, T. Q., & Margoliash, D. (2003). Neuronal populations and single cells representing learned auditory objects. Nature, 424(6949), 669–674.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Grace, J. A., Amin, N., Singh, N. C., & Theunissen, F. E. (2003). Selectivity for conspecific song in the zebra finch auditory forebrain. Journal of Neurophysiology, 89(1), 472–487.PubMedCrossRefGoogle Scholar
  31. Hahnloser, R. H. R., & Kotowicz, A. (2010). Auditory representations and memory in birdsong learning. Current Opinion in Neurobiology, 20(3), 332–339.PubMedCrossRefGoogle Scholar
  32. Hromádka, T., Deweese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology, 6(1), e16.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hsu, A., Woolley, S. M. N., Fremouw, T. E., & Theunissen, F. E. (2004). Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. The Journal of Neuroscience, 24(41), 9201–9211.PubMedCrossRefGoogle Scholar
  34. Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. A. Hinde (Ed.), Bird vocalizations (pp. 61–74). Cambridge, U.K.: Cambridge University Press.Google Scholar
  35. Jarvis, E. D. (2004). Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016, 749–777.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Jarvis, E. D. (2007). Neural systems for vocal learning in birds and humans: A synopsis. Journal of Ornithology, 148(1), 35–44.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Jarvis, E. D., & Nottebohm, F. N. (1997). Motor-driven gene expression. Proceedings of the National Academy of Sciences of the USA, 94(8), 4097–4102.PubMedCrossRefGoogle Scholar
  38. Jeanne, J. M., Thompson, J. V., Sharpee, T. O., & Gentner, T. Q. (2011). Emergence of learned categorical representations within an auditory forebrain circuit. The Journal of Neuroscience, 31(7), 2595–2606.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Jeong, J. K., Terleph, T. A., Burrows, K., Tremere, L. A., & Pinaud, R. (2011). Expression and rapid experience-dependent regulation of type-A GABAergic receptors in the songbird auditory forebrain. Developmental Neurobiology, 71(10), 803–817. Karten, H. J. (1968). The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research, 11(1), 134–153.Google Scholar
  40. Keller, G. B., & Hahnloser, R. H. R. (2009). Neural processing of auditory feedback during vocal practice in a songbird. Nature, 457(7226), 187–190.PubMedCrossRefGoogle Scholar
  41. Kelley, D. B., & Nottebohm, F. N. (1979). Projections of a telencephalic auditory nucleus-field L-in the canary. The Journal of Comparative Neurology, 183(3), 455–469.PubMedCrossRefGoogle Scholar
  42. Kim, G., & Doupe, A. J. (2011). Organized representation of spectrotemporal features in songbird auditory forebrain. The Journal of Neuroscience, 31(47), 16977–16990.PubMedCrossRefGoogle Scholar
  43. Knudsen, D., & Gentner, T. Q. (2010). Mechanisms of song perception in oscine birds. Brain and Language, 115(1), 59–68.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Knudsen, E. I. (1999). Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 185(4), 305–321.Google Scholar
  45. Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie, 22(7), 770–783.Google Scholar
  46. Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalizations in songbirds. Zeitschrift für Vergleichende Physiologie, 66(3), 257–272.Google Scholar
  47. Konishi, M. (1985). Birdsong: From behavior to neuron. Annual Review of Neuroscience, 8, 125–170.PubMedCrossRefGoogle Scholar
  48. Krützfeldt, N. O. E., Logerot, P., Kubke, M. F., & Wild, J. M. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata. I. Projections of nucleus angularis and nucleus laminaris to the auditory torus. The Journal of Comparative Neurology, 518(11), 2109–2134.Google Scholar
  49. Lei, H., & Mooney, R. (2010). Manipulation of a central auditory representation shapes learned vocal output. Neuron, 65(1), 122–134.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Leppelsack, H. J. (1974). Funktionelle Eigenschaften der Hörbahn im Feld L des Neostriatum caudale des Staren (Sturnus vulgaris L., Aves). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 88(3), 271–320.Google Scholar
  51. Leppelsack, H. J., & Vogt, M. (1976). Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 107(3), 263–274.Google Scholar
  52. Lewicki, M. S. (1996). Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. The Journal of Neuroscience, 16(18), 5855–5863.PubMedGoogle Scholar
  53. Lewicki, M. S., & Arthur, B. J. (1996). Hierarchical organization of auditory temporal context sensitivity. The Journal of Neuroscience, 16(21), 6987–6998.PubMedGoogle Scholar
  54. Linden, J. F., Liu, R. C., Sahani, M., Schreiner, C. E., & Merzenich, M. M. (2003). Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology, 90(4), 2660–2675.PubMedCrossRefGoogle Scholar
  55. Logerot, P., Krützfeldt, N. O. E., Wild, J. M., & Kubke, M. F. (2011). Subdivisions of the auditory midbrain (N. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS ONE, 6(6), e20686.Google Scholar
  56. Maney, D., & Pinaud, R. (2010). Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Frontiers in Neuroendocrinology, 32(3), 287–302.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Margoliash, D. (1983). Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. The Journal of Neuroscience, 3(5), 1039–1057.PubMedGoogle Scholar
  58. Margoliash, D. (1986). Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. The Journal of Neuroscience, 6(6), 1643–1661.PubMedGoogle Scholar
  59. Marler, P. (1970a). A comparative approach to vocal learning: Song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology, 71(2, Pt.2), 1–25.Google Scholar
  60. Marler, P. (1970b). Birdsong and speech development: Could there be parallels? American scientist, 58(6), 669–673.PubMedGoogle Scholar
  61. Marler, P. (2004). Bird calls: Their potential for behavioral neurobiology. Annals of the New York Academy of Sciences, 1016, 31–44.PubMedCrossRefGoogle Scholar
  62. Marler, P., & Peters, S. (1982). Structural changes in song ontogeny in the swamp sparrow Melospiza georgiana. The Auk, 99(3), 446–458.Google Scholar
  63. Meliza, C. D., Chi, Z., & Margoliash, D. (2010). Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework. Journal of Neurophysiology, 103(3), 1195–1208.PubMedCrossRefGoogle Scholar
  64. Mello, C. V., Vicario, D. S., & Clayton, D. F. (1992). Song presentation induces gene expression in the songbird forebrain. Proceedings of the National Academy of Sciences of the USA, 89(15), 6818–6822.PubMedCrossRefGoogle Scholar
  65. Mitchell, J. A., & Hall, G. (1984). Paleostriatal lesions and instrumental learning in the pigeon. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 36(2), 93–117.PubMedGoogle Scholar
  66. Mooney, R. (2000). Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. The Journal of Neuroscience, 20(14), 5420–5436.PubMedGoogle Scholar
  67. Müller, C. M., & Leppelsack, H. J. (1985). Feature extraction and tonotopic organization in the avian auditory forebrain. Experimental Brain Research, 59(3), 587–599.PubMedCrossRefGoogle Scholar
  68. Nagel, K. I., & Doupe, A. J. (2006). Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6), 845–859.PubMedCrossRefGoogle Scholar
  69. Nagel, K. I., & Doupe, A. J. (2008). Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron, 58(6), 938–955.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Nagel, K. I., Kim, G., McLendon, H., & Doupe, A. (2011). A bird brain’s view of auditory processing and perception. Hearing Research, 273(1–2), 123–133.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Nottebohm, F. N. (1970). Ontogeny of bird song. Science, 167(3920), 950–956.PubMedCrossRefGoogle Scholar
  72. Nottebohm, F. N., Kelley, D. B., & Paton, J. A. (1982). Connections of vocal control nuclei in the canary telencephalon. The Journal of Comparative Neurology, 207(4), 344–357.PubMedCrossRefGoogle Scholar
  73. Pinaud, R., & Mello, C. V. (2007). GABA immunoreactivity in auditory and song control brain areas of zebra finches. Journal of Chemical Neuroanatomy, 34(1–2), 1–21.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, G. F., Durand, S., Gütürkün, O., Lee, D. W., Mello, C. V., Powers, A., White, S. A., Hough, G., Kubikova, L., Smulders, T. V., Wada, K., Dugas-Ford., J., Husband, S., Yamamoto, K., Yu, J., Siang, C., & Jarvis, E. D. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473(3), 377–414.Google Scholar
  75. Rose, M. (1914). Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. Journal für Psychologie und Neurologie, 21(November), 278–352.Google Scholar
  76. Rothschild, G., Nelken, I., & Mizrahi, A. (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 13(3), 353–360.PubMedCrossRefGoogle Scholar
  77. Scheich, H., Langner, G., & Bonke, D. (1979). Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132(3), 257–276.Google Scholar
  78. Schumacher, J. W., Schneider, D. M., & Woolley, S. M. N. (2011). Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. Journal of Neurophysiology, 106(2), 500–514.PubMedCrossRefGoogle Scholar
  79. Sen, K., Theunissen, F. E., & Doupe, A. J. (2001). Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 86(3), 1445–1458.PubMedGoogle Scholar
  80. Shaevitz, S. S., & Theunissen, F. E. (2007). Functional connectivity between auditory areas field L and CLM and song system nucleus HVC in anesthetized zebra finches. Journal of Neurophysiology, 98(5), 2747–2764.PubMedCrossRefGoogle Scholar
  81. Sherman, P. W., Reeve, H. K., & Pfennig, D. W. (1997). Recognition systems. In J. R. Krebs & N. B. Davies (Eds.), Behavioral ecology (4th ed., pp. 69–96). Oxford: Blackwell.Google Scholar
  82. Swets, J. A. (1961). Detection theory and psychophysics: A review. Psychometrika, 26(1), 49–63.PubMedCrossRefGoogle Scholar
  83. Terleph, T. A., Mello, C. V., & Vicario, D. S. (2006). Auditory topography and temporal response dynamics of canary caudal telencephalon. Journal of Neurobiology, 66(3), 281–292.PubMedCrossRefGoogle Scholar
  84. Terleph, T. A., Mello, C. V., & Vicario, D. S. (2007). Species differences in auditory processing dynamics in songbird auditory telencephalon. Developmental Neurobiology, 67(11), 1498–1510.PubMedCrossRefGoogle Scholar
  85. Theunissen, F. E., & Shaevitz, S. S. (2006). Auditory processing of vocal sounds in birds. Current Opinion in Neurobiology, 16(4), 400–407.PubMedCrossRefGoogle Scholar
  86. Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. The Journal of Neuroscience, 20(6), 2315–2331.PubMedGoogle Scholar
  87. Theunissen, F. E., David, S V, Singh, N C, Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network, 12(3), 289–316.PubMedGoogle Scholar
  88. Theunissen, F. E., Amin, N., Shaevitz, S. S., Woolley, S. M. N., Fremouw, T., & Hauber, M. E. (2004a). Song selectivity in the song system and in the auditory forebrain. Annals of the New York Academy of Sciences, 1016, 222–245.PubMedCrossRefGoogle Scholar
  89. Theunissen, F. E., Woolley, S. M. N., Hsu, A, & Fremouw, T. (2004b). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.PubMedCrossRefGoogle Scholar
  90. Thompson, J. V., & Gentner, T. Q. (2010). Song recognition learning and stimulus-specific weakening of neural responses in the avian auditory forebrain. Journal of Neurophysiology, 103(4), 1785–1797.PubMedCrossRefGoogle Scholar
  91. Tremere, L. A, Jeong, J. K., & Pinaud, R. (2009). Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. The Journal of Neuroscience, 29(18), 5949–5963.Google Scholar
  92. Vates, G. E., Broome, B. M., Mello, C. V., & Nottebohm, F. N. (1996). Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. The Journal of Comparative Neurology, 366(4), 613–642.PubMedCrossRefGoogle Scholar
  93. Wilbrecht, L., & Nottebohm, F. N. (2003). Vocal learning in birds and humans. Mental Retardation and Developmental Disabilities Research Reviews, 9(3), 135–148.PubMedCrossRefGoogle Scholar
  94. Wild, J. M., Krützfeldt, N. O. E., & Kubke, M. F. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata. III. Projections of the superior olive and lateral lemniscal nuclei. The Journal of Comparative Neurology, 518(11), 2149–2167.Google Scholar
  95. Woolley, S. M. N., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.PubMedCrossRefGoogle Scholar
  96. Woolley, S. M. N., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.PubMedCrossRefGoogle Scholar
  97. Woolley, S. M. N., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8(10), 1371–1379.PubMedCrossRefGoogle Scholar
  98. Woolley, S. M. N., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26(9), 2499–2512.PubMedCrossRefGoogle Scholar
  99. Woolley, S. M. N., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional groups in the avian auditory system. The Journal of Neuroscience, 29(9), 2780–2793.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Zann, R. (1985). Ontogeny of the zebra finch distance call: I. Effects of cross-fostering to Bengalese finches. Zeitschrift für Tierpsychologie, 68(1), 1–23.Google Scholar
  101. Zaretsky, M. D., & Konishi, M. (1976). Tonotopic organization in the avian telencephalon. Brain Research, 111(1), 167–171.PubMedCrossRefGoogle Scholar
  102. Zeng, S., Zhang, X., Peng, W., & Zuo, M. (2004). Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications. The Journal of Comparative Neurology, 470(2), 192–209.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of NeuroinformaticsUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations