Skip to main content

Origin and Development of Hair Cell Orientation in the Inner Ear

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Inner ear sensory epithelia possess systematically aligned hair cell stereovillar bundles and are an advanced case of the phenomenon of planar cell polarity (PCP). Comparison of vestibular and auditory epithelia of different vertebrate species revealed that inner ear organs evolved a great diversity of hair cell orientation patterns. At the same time, there are conserved PCP features and stereotypical “basic PCP patterns.” The molecular network that induces and specifies PCP is incompletely understood.

PCP control acts on several levels and PCP development involves independently controlled and subsequent, but overlapping, events. Inner ear epithelia indicate that it is necessary to distinguish carefully between three different aspects of PCP control: (1) tissue-wide “global polarity” that establishes a main polarity vector relative to the organ axes, (2) generation of “basic hair cell orientation patterns” either unidirectional or bidirectional, and (3) “refinement of hair cell orientation” and coordinated regional alignment.

Comparative studies of PCP development of inner ears are especially important because they help to define the demands on a conclusive PCP concept. Macular organs, for instance, revealed that PCP events (1) and (2) must in fact be independently controlled, although the mechanisms remain unknown. Likewise the phenomenon of hair cell reorientation, as naturally occurring in the avian auditory epithelium, illustrates the complexity of coordinated hair cell alignment and may help to unravel further the molecular control of PCP events (2) and (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, P. N., Krasnow, R. E., & Liu, J. (1997). Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Current Biology, 7(12), 940–949.

    CAS  PubMed  Google Scholar 

  • Aigouy, B., Farhadifar, R., Staple, D. B., Sagner, A., Röper, J.-C., Jülicher, F., & Eaton, S. (2010). Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell, 142(5), 773–786.

    CAS  PubMed  Google Scholar 

  • Amonlirdviman, K., Khare, N. A., Tree, D. R. P., Chen, W.-S., Axelrod, J. D., & Tomlin, C. J. (2005). Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science, 307(5708), 423–426.

    CAS  PubMed  Google Scholar 

  • Andre, P., Wang, Q., Wang, N., Gao, B., Schilit, A., Halford, M. M.,,Stacker, S. A., Zhang, X., & Yang, Y. (2012). The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2. The Journal of Biological Chemistry, 287(53), 44518–44525.

    CAS  PubMed  Google Scholar 

  • Axelrod, J. D. (2009). Progress and challenges in understanding planar cell polarity signaling. Seminars in Cell & Developmental Biology, 20(8), 964–971.

    Google Scholar 

  • Bartolami, S., Goodyear, R., & Richardson, G. (1991). Appearance and distribution of the 275 kD hair cell antigen during development of the avian inner ear. The Journal of Comparative Neurology, 314(4), 777–788.

    CAS  PubMed  Google Scholar 

  • Bastock, R., Strutt, H., & Strutt, D. (2003). Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development, 130(13), 3007–3014.

    CAS  PubMed  Google Scholar 

  • Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: New functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(Pt 6), 737–746.

    CAS  PubMed  Google Scholar 

  • Casal, J., Lawrence, P. A., & Struhl, G. (2006). Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development, 133(22), 4561–4572.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen, G. M., & Cotanche, D. A. (1992). Development of the sensory receptors and their innervation in the chick cochlea. In Romand, R. (Ed.), Development of auditory and vestibular systems (Vol. 2, pp. 101–138). Philadelphia: Elsevier.

    Google Scholar 

  • Cole, L. K., Le Roux, I., Nunes, F., Laufer, E., Lewis, J., & Wu, D. K. (2000). Sensory organ generation in the chicken inner ear: Contributions of Bone Morphogenetic Protein 4, Serrate1, and Lunatic Fringe. The Journal of Comparative Neurology, 424(3), 509–520.

    CAS  PubMed  Google Scholar 

  • Corwin, J. T. (1981). Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and non-otolithic sound detection. Journal of Comparative Physiology, A: Sensory, Neural, and Behavioral Physiology, 142(3), 379–390.

    Google Scholar 

  • Cotanche, D. A., & Corwin, J. T. (1991). Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hearing Research, 52(2), 379–402.

    CAS  PubMed  Google Scholar 

  • Curtin, J. A., Quint, E., Tsipouri, V., Arkell, R. M., Cattanach, B., Copp, A. J., Henderson, D. J., Spurr, N., Stanier, P., Fisher E. M., Nolan, P. M., Steel, K. P., Brown, S. D. M., Gray, I. C., & Murdoch, J. N. (2003). Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Current Biology, 13(13), 1129–1133.

    CAS  PubMed  Google Scholar 

  • Dabdoub, A., Donohue, M. J., Brennan, A., Wolf, V., Montcouquiol, M., Sassoon, D. A., Hseih, J-C., Rubin, J. S., Salinas, P. C., & Kelley, M. W. (2003). Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development, 130(11), 2375–2384.

    CAS  PubMed  Google Scholar 

  • Davies, A., Formstone, C., Mason, I., & Lewis, J. (2005). Planar polarity of hair cells in the chick inner ear is correlated with polarized distribution of c-flamingo-1 protein. Developmental Dynamics, 233(3), 998–1005.

    CAS  PubMed  Google Scholar 

  • Deans, M. R., Antic, D., Suyama, K., Scott, M. P., Axelrod, J. D., & Goodrich, L. V. (2007). Asymmetric distribution of prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear. The Journal of Neuroscience, 27(12), 3139–3147.

    CAS  PubMed  Google Scholar 

  • Denman-Johnson, K., & Forge, A. (1999). Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. Journal of Neurocytology, 28(10–11), 821–835.

    CAS  PubMed  Google Scholar 

  • Duncan, J. S., & Fritzsch, B. (2012). Evolution of sound and balance perception: Innovations that aggregate single hair cells into the ear and transform a gravistatic Sensor into the Organ of Corti. Anatomical Record, 295(11), 1760–1774.

    Google Scholar 

  • Eatock, R. A., & Songer, J. E. (2011). Vestibular hair cells and afferents: Two channels for head motion signals. Annual Review of Neuroscience, 34, 501–534.

    CAS  PubMed  Google Scholar 

  • Eaton, S. (1997). Planar polarization of Drosophila and vertebrate epithelia. Current Opinion in Cell Biology, 9, 860–866.

    CAS  PubMed  Google Scholar 

  • Fekete, D. M. (2003). Developmental biology: Rocks that roll zebrafish. Science, 302(5643), 241–242.

    CAS  PubMed  Google Scholar 

  • Fekete, D. M., Muthukumar, S., & Karagogeos, D. (1998). Hair cells and supporting cells share a common progenitor in the avian inner ear. The Journal of Neuroscience, 18(19), 7811–7821.

    CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1992). Quantitative analysis of the innervation of the chicken basilar papilla. Hearing Research, 61(1–2), 167–178.

    CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1994). General pattern and morphological specializations of the avian cochlea. Scanning Microscopy, 8(2), 351–363; discussion 363–364.

    CAS  PubMed  Google Scholar 

  • Fischer, F. P., Köppl, C., & Manley, G. A. (1988). The basilar papilla of the barn owl Tyto alba: A quantitative morphological SEM analysis. Hearing Research, 34(1), 87–101.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B., Signore, M., & Simeone, A. (2001). Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Development Genes and Evolution, 211(8–9), 388–396.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B., Beisel, K. W., Jones, K., Fariñas, I., Maklad, A., Lee, J., & Reichardt, L. F. (2002). Development and evolution of inner ear sensory epithelia and their innervation. Journal of Neurobiology, 53(2), 143–156.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., Kopecky, B. J., Elliott, K. L., Kersigo, J.,& Yang, T. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.

    Google Scholar 

  • Gao, B., Song, H., Bishop, K., Elliot, G., Garrett, L., English, M. A., Andre, P., Robinson, J., Sood, R., Minami, Y., Economides, A. N., & Yang, Y. (2011). Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Developmental Cell, 20(2), 163–176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao, C., & Chen, Y.-G. (2010). Dishevelled: The hub of Wnt signaling. Cellular Signalling, 22(5), 717–727.

    CAS  PubMed  Google Scholar 

  • Gillespie, P. G. (1995). Molecular machinery of auditory and vestibular transduction. Current Opinion in Neurobiology, 5(4), 449–455.

    CAS  PubMed  Google Scholar 

  • Giese, A. P., Ezan, J., Wang, L., Lasvaux, L., Lembo, F., Mazzocco, C., Richard, E., Reboul, J., Borg, J-P., Kelley, M. W., Sans, N., Brigande, J., Montcouquiol, M. (2012). Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear. Development, 139(20), 3775–3785.

    CAS  PubMed  Google Scholar 

  • Gleich, O. (1989). Auditory primary afferents in the starling: Correlation of function and morphology. Hearing Research, 37(3), 255–267.

    CAS  PubMed  Google Scholar 

  • Gleich, O., & Manley, G. A. (1988). Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla. Hearing Research, 34, 69–85.

    CAS  PubMed  Google Scholar 

  • Gleich, O., & Manley, G. A. (2000). The hearing organ of birds and crocodilia. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (pp. 206–252). New York: Springer-Verlag.

    Google Scholar 

  • Gleich, O., Manley, G. A., Mandl, A., & Dooling, R. J. (1994). Basilar papilla of the canary and zebra finch: A quantitative scanning electron microscopical description. Journal of Morphology, 221(1), 1–24.

    Google Scholar 

  • Goodrich, L. V., & Strutt, D. (2011). Principles of planar polarity in animal development. Development, 138(10), 1877–1892.

    CAS  PubMed  Google Scholar 

  • Goodyear, R., & Richardson, G. (1997). Pattern formation in the basilar papilla: Evidence for cell rearrangement. The Journal of Neuroscience, 17(16), 6289–6301.

    CAS  PubMed  Google Scholar 

  • Goodyear, R., Killick, R., Legan, P. K., & Richardson, G. P. (1996). Distribution of β-tectorin mRNA in the early posthatch and developing avian inner ear. Hearing Research, 96(1–2), 167–178.

    CAS  PubMed  Google Scholar 

  • Goodyear, R. J., Gates, R., Lukashkin, A. N., & Richardson, G. P. (1999). Hair cell numbers continue to increase in the utricular macula of the early posthatch chick. Journal of Neurocytology, 28(10–11), 851–861.

    CAS  PubMed  Google Scholar 

  • Gray, R. S., Roszko, I., & Solnica-Krezel, L. (2011). Planar cell polarity: Coordinating morphogenetic cell behaviors with embryonic polarity. Developmental Cell, 21(1), 120–133.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green, J. L., Inoue, T., & Sternberg, P. W. (2008). Opposing Wnt pathways orient cell polarity during organogenesis. Cell, 134(4), 646–656.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gros, J., Serralbo, O., & Marcelle, C. (2009). WNT11 acts as a directional cue to organize the elongation of early muscle fibers. Nature, 457(7229), 589–593.

    CAS  PubMed  Google Scholar 

  • Gubb, D., & García-Bellido, A. (1982). A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 68, 37–57.

    CAS  PubMed  Google Scholar 

  • Hammond, K. L., & Whitfield, T. T. (2006). The developing lamprey ear closely resembles the zebrafish otic vesicle: otx1 expression can account for all major patterning differences. Development, 133(7), 1347–1357.

    CAS  PubMed  Google Scholar 

  • Hudspeth, A. J., & Corey, D. P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proceedings of the National Academy of Sciences of the USA, 74(6), 2407–2411.

    CAS  PubMed  Google Scholar 

  • Jenny, A., Darken, R. S., Wilson, P. A., & Mlodzik, M. (2003). Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. The EMBO Journal, 22(17), 4409–4420.

    CAS  PubMed  Google Scholar 

  • Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M., & Mlodzik, M. (2005). Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nature Cell Biology, 7(7), 691–697.

    CAS  PubMed  Google Scholar 

  • Jones, C., Roper, V. C., Foucher, I., Qian, D., Banizs, B., Petit, C., Yoder, B. K., & Chen, P. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genetics, 40(1), 69–77.

    CAS  PubMed  Google Scholar 

  • Jørgensen, J. M. (1989). Number and distribution of hair cells in the utricular macula of some avian species. Journal of Morphology, 201(2), 187–204.

    Google Scholar 

  • Jørgensen, J. M., & Locket, N. A. (1995). The inner ear of the echidna Tachyglossus aculeatus: The vestibular sensory organs. Proceedings of the Royal Society of London B: Biological Scienecs, 260(1358), 183–189.

    Google Scholar 

  • Katayama, A., & Corwin, J. T. (1989). Cell production in the chicken cochlea. The Journal of Comparative Neurology, 281(1), 129–135.

    CAS  PubMed  Google Scholar 

  • Kil, S. H., & Collazo, A. (2001). Origins of inner ear sensory organs revealed by fate map and time-lapse analyses. Developmental Biology, 233(2), 365–379.

    CAS  PubMed  Google Scholar 

  • Knowlton, V. Y. (1967). Correlation of the development of membranous and bony labyrinths, acoustic ganglia, nerves, and brain centers of the chick embryo. Journal of Morphology, 121(3), 179–207.

    Google Scholar 

  • Köppl, C., Gleich, O., Schwabedissen, G., Siegl, E., & Manley, G. A. (1998). Fine structure of the basilar papilla of the emu: Implications for the evolution of avian hair-cell types. Hearing Research, 126(1–2), 99–112.

    PubMed  Google Scholar 

  • Ladhams, A., & Pickles, J. O. (1996). Morphology of the monotreme organ of Corti and macula lagena. The Journal of Comparative Neurology, 366(2), 335–347.

    CAS  PubMed  Google Scholar 

  • Ladich, F. & Popper, A.N., (2004). Parallel evolution of fish hearing organs. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Evolution of the vertebrate auditory system (pp. 95–127). New York: Springer Science+Business Media.

    Google Scholar 

  • Lawrence, P. A., Crick, F. H. C., & Munro, M. (1972). A gradient of positional information in an insect, Rhodnius. Journal of Cell Science, 11, 815–853.

    CAS  PubMed  Google Scholar 

  • Lawrence, P. A., Casal, J., & Struhl, G. (2004). Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development, 131(19), 4651–4664.

    CAS  PubMed  Google Scholar 

  • Lawrence, P. A., Struhl, G., & Casal, J. (2007). Planar cell polarity: One or two pathways? Nature Reviews Genetics, 8(7), 555–563.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis, E. R., Leverenz, E. L., & Bialek, W. S. (1985). The vertebrate inner ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Li, S., Esterberg, R., Lachance, V., Ren, D., Radde-Gallwitz, K., Chi, F., Parent, J-L., Fritz, A., & Chen, P. (2011). Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity. Proceedings of the National Academy of Sciences of the USA, 108(6), 2264–2269.

    CAS  PubMed  Google Scholar 

  • Lim, D. J. (1980). Cochlear anatomy related to cochlear micromechanics. A review. The Journal of the Acoustical Society of America, 67(5), 1686–1695.

    Google Scholar 

  • Locke, M. (1959). The cuticular pattern in an insect, Rhodnius prolixus Stål. Journal of Experimental Biology, 36, 459–477.

    Google Scholar 

  • Lovell, J. M., Findlay, M. M., Harper, G., Moate, R. M., & Pilgrim, D. A. (2005). The polarisation of hair cells from the ear of the European bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology A: Molecular & Integrative Physiology, 141(1), 116–121.

    Google Scholar 

  • Lowenstein, O., & Wersäll, J, (1959). Functional interpretation of the electron microscopic stmcture of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature, 184, 1807.

    Google Scholar 

  • Lu, X., Borchers, A. G. M., Jolicoeur, C., Rayburn, H., Baker, J. C., & Tessier-Lavigne, M. (2004). PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature, 430(6995), 93–98.

    CAS  PubMed  Google Scholar 

  • Lu, Z., & Popper, A. N. (1998). Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: Fluorescent imaging of ciliary bundles. Hearing Research, 126(1–2), 47–57.

    CAS  PubMed  Google Scholar 

  • Macheda, M. L., Sun, W. W., Kugathasan, K., Hogan, B. M., Bower, N. I., Halford, M. M., Zhang, Y. F., Jacques, B. E., Lieschke, G. J., Dabdoub, A., & Stacker, S. A. (2012). The Wnt receptor Ryk plays a role in mammalian planar cell polarity signaling. The Journal of Biological Chemistry, 287(35), 29312–29323.

    CAS  PubMed  Google Scholar 

  • Mahuzier, A., Gaudé, H.-M., Grampa, V., Anselme, I., Silbermann, F., Leroux-Berger, M., Delacour, D., Ezan, J., Montcouquiol, M., Saunier, S., Schneider-Maunoury, S., & Vesque, C. (2012). Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity. The Journal of Cell Biology, 198(5), 927–940.

    CAS  PubMed  Google Scholar 

  • Manley, G. A. (1990). Peripheral hearing mechanisms in reptiles and birds. Zoophysiology 26. Berlin: Springer-Verlag.

    Google Scholar 

  • Manley, G. A. (2000). The hearing organs of lizards. In R. Dooling, A. N. Popper, & R. R. Fay (Eds.), Comparative hearing: Birds and reptiles (pp. 139–196). New York:Springer-Verlag.

    Google Scholar 

  • Manley, G. A., Gleich, O., Kaiser, A., & Brix, J. (1989). Functional differentiation of sensory cells in the avian auditory periphery. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 164(3), 289–296.

    Google Scholar 

  • Manley, G. A., Meyer, B., Fischer, F. P., Schwabedissen, G., & Gleich, O. (1996). Surface morphology of basilar papilla of the tufted duck Aythya fuligula, and domestic chicken Gallus gallus domesticus. Journal of Morphology, 227(2), 197–212.

    CAS  PubMed  Google Scholar 

  • Maye, P., Zheng, J., Li, L., & Wu, D. (2004). Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway. The Journal of Biological Chemistry, 279(23), 24659–24665.

    CAS  PubMed  Google Scholar 

  • Mii, Y., & Taira, M. (2009). Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development, 136(24), 4083–4088.

    CAS  PubMed  Google Scholar 

  • Miller, M. R. (1992). The evolutionary implications of the structural variations in the auditory papilla of lizards. In D. B. Webster, R. R. Fay & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 463–487). New York: Springer-Verlag.

    Google Scholar 

  • Montcouquiol, M., Rachel, R. A., Lanford, P. J., Copeland, N. G., Jenkins, N. A., & Kelley, M. W. (2003). Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature, 423(6936), 173–177.

    CAS  PubMed  Google Scholar 

  • Montcouquiol, M., Crenshaw, E. B., & Kelley, M. W. (2006). Noncanonical Wnt signaling and neural polarity. Annual Review of Neuroscience, 29, 363–386.

    CAS  PubMed  Google Scholar 

  • Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience, 18(9), 3327–3335.

    CAS  PubMed  Google Scholar 

  • Munnamalai, V., & Fekete, D. M. (2013). Wnt signaling during cochlear development. Seminars in Cell & Developmental Biology, 24(5), 480–489.

    Google Scholar 

  • Niehrs, C. (2012). The complex world of WNT receptor signalling. Nature Reviews Molecular Cell Biology, 13(12), 767–779.

    CAS  PubMed  Google Scholar 

  • Patel, K., Makarenkova, H., & Jung, H. S. (1999). The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mechanisms of Development, 86(1–2), 51–62.

    CAS  PubMed  Google Scholar 

  • Pauley, S., Lai, E., & Fritzsch, B. (2006). Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Developmental Dynamics, 235(9), 2470–2482.

    CAS  PubMed  Google Scholar 

  • Pickles, J. O., Brix, J., Comis, S. D., Gleich, O., Köppl, C., Manley, G. A., & Osborne, M. P. (1989). The organization of tip links and stereocilia on hair cells of bird and lizard basilar papillae. Hearing Research, 41(1), 31–41.

    CAS  PubMed  Google Scholar 

  • Piepho, H. (1955). Über die Ausrichtung der Schuppenbälge und Schuppen am Schmetterlingsrumpf. Die Naturwissenschaften, 42, 22.

    Google Scholar 

  • Popper, A. N. (1978). A comparative study of the otolithic organs in fishes. Scanning Electron Microscopy, II (pp. 405–416). AMF O'Hare, IL: SEM Inc..

    Google Scholar 

  • Popper, A. N., & Schilt, C. R. (2008). Hearing and acoustic behavior: Basic and applied considerations. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish bioacoustics (pp. 17–48). New York: Springer Science+Business Media.

    Google Scholar 

  • Qian, D., Jones, C., Rzadzinska, A., Mark, S., Zhang, X., Steel, K. P., Dai, X., & Chen, P. (2007). Wnt5a functions in planar cell polarity regulation in mice. Developmental Biology, 306(1), 121–133.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rattner, A., Hsieh, J. C., Smallwood, P. M., Gilbert, D. J., Copeland, N. G., Jenkins, N. A., & Nathans, J. (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proceedings of the National Academy of Sciences of the USA, 94(7), 2859–2863.

    CAS  PubMed  Google Scholar 

  • Rowe, M. H., & Peterson, E. H. (2006). Autocorrelation analysis of hair bundle structure in the utricle. Journal of Neurophysiology, 96(5), 2653–2669.

    CAS  PubMed  Google Scholar 

  • Satoh, T., & Fekete, D. M. (2005). Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development, 132(7), 1687–1697.

    CAS  PubMed  Google Scholar 

  • Satoh, W., Matsuyama, M., Takemura, H., Aizawa, S., & Shimono, A. (2008). Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/β-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis, 46(2), 92–103.

    PubMed  Google Scholar 

  • Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D., & Uemura, T. (2006). Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Developmental Cell, 10(2), 209–222.

    CAS  PubMed  Google Scholar 

  • Sienknecht, U. J., & Fekete, D. M. (2008). Comprehensive Wnt-related gene expression during cochlear duct development in chicken. The Journal of Comparative Neurology, 510(4), 378–395.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sienknecht, U. J., Anderson, B. K., Parodi, R. M., Fantetti, K. N., & Fekete, D. M. (2011). Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates. Developmental Biology, 352(1), 27–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon, M. A. (2004). Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development, 131(24), 6175–6184.

    CAS  PubMed  Google Scholar 

  • Simons, M., & Mlodzik, M. (2008). Planar cell polarity signaling: From fly development to human disease. Annual Review of Genetics, 42, 517–540.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smolders, J. W., Ding-Pfennigdorff, D., & Klinke, R. (1995). A functional map of the pigeon basilar papilla: Correlation of the properties of single auditory nerve fibres and their peripheral origin. Hearing Research, 92(1–2), 151–169.

    CAS  PubMed  Google Scholar 

  • Smotherman, M. S., & Narins, P. M. (2000). Hair cells, hearing and hopping: A field guide to hair cell physiology in the frog. Journal of Experimental Biology, 203(Pt 15), 2237–2246.

    CAS  PubMed  Google Scholar 

  • Smotherman, M., & Narins, P. (2004). Evolution of the amphibian ear. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system. (pp. 164–199). New York: Springer Science+Business Media.

    Google Scholar 

  • Sokolowski, B. H., & Popper, A. N. (1987). Gross and ultrastructural development of the saccule of the toadfish Opsanus tau. Journal of Morphology, 194(3), 323–348.

    CAS  PubMed  Google Scholar 

  • Struhl, G., Casal, J., & Lawrence, P. A. (2012). Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity. Development, 139(19), 3665–3674.

    CAS  PubMed  Google Scholar 

  • Strutt, D., & Warrington, S. J. (2008). Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development, 135(18), 3103–3111.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strutt, H., & Strutt, D. (2009). Asymmetric localisation of planar polarity proteins: Mechanisms and consequences. Seminars in Cell & Developmental Biology, 20(8), 957–963.

    Google Scholar 

  • Strutt, H., Warrington, S. J., & Strutt, D. (2011). Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Developmental Cell, 20(4), 511–525.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama, Y., Stump, R. J. W., Nguyen, A., Wen, L., Chen, Y., Wang, Y., Murdoch, J. N., Lovicu, F. J., & McAvoy, J. W. (2010). Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Developmental Biology, 338(2), 193–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, J., Abramova, N., Charlton, J., & Adler, P. N. (1998). Van Gogh: A new Drosophila tissue polarity gene. Genetics, 150(1), 199–210.

    CAS  PubMed  Google Scholar 

  • Thornhill, R. (1972). The development of the labyrinth of the lamprey (Lampetra fluviatilis Linn. 1758). Proceedings of the Royal Society of London B: Biological Sciences, 181, 175–198.

    Google Scholar 

  • Tilney, L. G., Tilney, M. S., Saunders, J. S., & DeRosier, D. J. (1986). Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Developmental Biology, 116(1), 100–118.

    Google Scholar 

  • Tilney, M. S., Tilney, L. G., & DeRosier, D. J. (1987). The distribution of hair cell bundle lengths and orientations suggests an unexpected pattern of hair cell stimulation in the chick cochlea. Hearing Research, 25(2–3), 141–151.

    CAS  PubMed  Google Scholar 

  • Tilney, L. G., Tilney, M. S., & Cotanche, D. A. (1988). Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. The Journal of Cell Biology, 106(2), 355–365.

    Google Scholar 

  • Tilney, L. G., Tilney, M. S., & DeRosier, D. J. (1992). Actin filaments, stereocilia, and hair cells: How cells count and measure. Annual Review of Cell Biology, 8, 257–274.

    CAS  PubMed  Google Scholar 

  • Torban, E., Wang, H.-J., Groulx, N., & Gros, P. (2004). Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. The Journal of Biological Chemistry, 279(50), 52703–52713.

    CAS  PubMed  Google Scholar 

  • Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L., Takeichi, M., & Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell, 98(5), 585–595.

    CAS  PubMed  Google Scholar 

  • Vater, M., Meng, J., & Fox, R. C. (2004). Hearing organ evolution and specialization: Early and later mammals. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 256–288). New York: Springer Science+Business Media.

    Google Scholar 

  • Vervenne, H. B. V. K., Crombez, K. R. M. O., Lambaerts, K., Carvalho, L., Köppen, M., Heisenberg, C.-P., Van de Ven, W. J. M., & Petit, M. M. R. (2008). Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Developmental Biology, 320(1), 267–277.

    CAS  PubMed  Google Scholar 

  • Wang, J., Mark, S., Zhang, X., Qian, D., Yoo, S.-J., Radde-Gallwitz, K., Zhang, Y., Lin, X., Collazo, A., Wynshaw-Boris, A., & Chen, P. (2005). Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nature Genetics, 37(9), 980–985.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, J., Hamblet, N. S., Mark, S., Dickinson, M. E., Brinkman, B. C., Segil, N., Fraser, S. E., Chen, P., Wallingford, J. B., & Wynshaw-Boris, A. (2006a). Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development, 133(9), 1767–1778.

    CAS  PubMed  Google Scholar 

  • Wang, Y., & Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new insights and new questions. Development, 134(4), 647–658.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Guo, N., & Nathans, J. (2006b). The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. The Journal of Neuroscience, 26(8), 2147–2156.

    CAS  PubMed  Google Scholar 

  • Warchol, M. E., & Speck, J. D. (2007). Expression of GATA3 and Tenascin in the avian vestibular maculae: Normative patterns and changes during sensory regeneration. The Journal of Comparative Neurology, 500(4), 646–657.

    Google Scholar 

  • Warchol, M. E., & Montcouquiol, M. (2010). Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear. Journal of the Association for Research in Otolaryngology, 11(3), 395–406.

    PubMed Central  PubMed  Google Scholar 

  • Wigglesworth, V. (1940). Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). Journal of Experimental Biology, 17, 180–200.

    Google Scholar 

  • Wu, D. K., & Oh, S. H. (1996). Sensory organ generation in the chick inner ear. The Journal of Neuroscience, 16(20), 6454–6462.

    CAS  PubMed  Google Scholar 

  • Wu, J., & Mlodzik, M. (2009). A quest for the mechanism regulating global planar cell polarity of tissues. Trends in Cell Biology, 19(7), 295–305.

    PubMed Central  PubMed  Google Scholar 

  • Yamamoto, S., Nishimura, O., Misaki, K., & Nishita, M. (2008). Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Developmental Cell, 15(1), 23–36.

    CAS  PubMed  Google Scholar 

  • Yin, H., Copley, C. O., Goodrich, L. V., & Deans, M. R. (2012). Comparison of phenotypes between different Vangl2 mutants demonstrates dominant effects of the looptail mutation during hair cell development (F. Pichaud, Ed.) PLoS ONE, 7(2), e31988.

    Google Scholar 

  • Yoshino, K., Rubin, J. S., Higinbotham, K. G., Uren, A., Anest, V., Plisov, S. Y., & Perantoni, A. O. (2001). Secreted Frizzled-related proteins can regulate metanephric development. Mechanisms of Development, 102(1–2), 45–55.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhai, S.-Q., Shou, J., Song, W., Sun, J.-H., Guo, W., Zheng, G., Hu, Y., & Gao, W. (2007). Isolation, growth and differentiation of hair cell progenitors from the newborn rat cochlear greater epithelial ridge. Journal of Neuroscience Methods, 164(2), 271–279.

    CAS  PubMed  Google Scholar 

  • Zheng, J. L., & Gao, W. Q. (2000). Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neuroscience, 3(6), 580–586.

    CAS  PubMed  Google Scholar 

  • Zine, A., Aubert, A., Qiu, J., Therianos, S., Guillemot, F., Kageyama, R., & de Ribaupierre, F. (2001). Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. The Journal of Neuroscience, 21(13), 4712–4720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike J. Sienknecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sienknecht, U.J. (2013). Origin and Development of Hair Cell Orientation in the Inner Ear. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_28

Download citation

Publish with us

Policies and ethics