Skip to main content

Roles for Prestin in Harnessing the Basilar Membrane to the Organ of Corti

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

This chapter is centered on the proposal that evolutionary changes in prestin provide the basis for the amplifying, impedance-matching, molecular link that harnesses the outer hair cells (OHCs) of the mammalian cochlea, via specialized supporting cells of the organ of Corti, to the enormous frequency range of the mechanically tuned basilar membrane. This devolution of frequency tuning from potential, intrinsic, frequency-tuning, mechanisms of the OHCs, themselves to an extrinsic source of frequency tuning has enabled mammals to listen to sounds over an enormous range of frequencies from infrasound to frequencies way beyond the auditory ranges of other amniotes. The final section of the chapter is concerned with the evidence that forces generated by prestin are under direct, inhibitory, centrifugal efferent neural control from the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, J. T., Winter, H., Schaechinger, T. J., Weber, T., Wang, X., He, D. Z. Z., Hendrich, O., Geisler, H-S., Zimmermann, U., Oelmann, K., Knipper, M., Göpfert, M. C., & Oliver, D. (2007). Voltage-sensitive prestin orthologue expressed in zebrafish hair cells. Journal of Physiology, 580, 451–461.

    CAS  PubMed  Google Scholar 

  • Angelborg, C., & Engstrom, H. (1973). The normal organ of Corti. In A. R. Moller (Ed.), Basic mechanisms of hearing (pp. 125–182). New York and London: Academic Press.

    Google Scholar 

  • Arnold, W., & Anniko, M. (1989). Supporting and membrane structures of human outer hair cells: Evidence for an isometric contraction. Oto-Rhino-Laryngology, 51, 339–353.

    CAS  Google Scholar 

  • Ashmore, J. (2008). Cochlear outer hair cell motility. Physiological Reviews, 88, 173–210.

    CAS  PubMed  Google Scholar 

  • Beurg, M., Tan, X. & Fettiplace, R. (2013). A prestin motor in chicken auditory hair cells: active force generation in a nonmammalian species. Neuron, 79, 69–81.

    CAS  PubMed  Google Scholar 

  • Bezanilla, F. (2008). How membrane proteins sense voltage. Nature Revues in Molecular and Cellular Biology, 9, 323–332.

    CAS  Google Scholar 

  • Blanchet, C., Erostegui, C., Sugasawa, M., & Dulon, D. (1996). Acetylcholine-induced potassium current of guinea pig outer hair cells: Its dependence on a calcium influx through nicotinic-like receptors. Journal of Neuroscience, 16, 2574–2584.

    CAS  PubMed  Google Scholar 

  • Bobbin, R. P. (2001). ATP-induced movement of the stalks of isolated cochlear Deiters’ cells. NeuroReport, 12, 2923–2926.

    CAS  PubMed  Google Scholar 

  • Bobbin, R. P., Campbell, J., Lousteau, S., & Mandhare, M. (2002). Electrical and ATP induced movements of the phalangeal processes of isolated cochlear Deiters’ cells. In C. I. Berlin, L. J. Hood, & A. Ricci (Eds.), Hair cell micromechanics and otoacoustic emissions (pp. 91–106). Clifton Park, NY: Thomson Delmar Learning.

    Google Scholar 

  • Brownell, W. E., Bader, C. R., Bertrand, D., & De, R.Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science, 227, 194–196.

    CAS  PubMed  Google Scholar 

  • Bruns, V., & Schmieszek, E. (1980). Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea. Hearing Research, 3, 27–43.

    CAS  PubMed  Google Scholar 

  • Bruns, V., MĂĽller, M., Hofer, W., Heth, G. & Nevo, E. (1988). Inner ear structure and electrophysiological audiograms of the subterranean mole rat, Spalax ehrenbergi. Hearing Research, 33(1), 1–9.

    CAS  PubMed  Google Scholar 

  • Cazals, Y., Aran, J. M., Erre, J. P., Guilhaume, A., & Aurousseau, C. (1983) Vestibular acoustic reception in the guinea pig: A saccular function? Acta Oto-Laryngologica, 95(3–4), 211–217.

    CAS  PubMed  Google Scholar 

  • Chen, F., Zha, D., Fridberger, A., Zheng, J., Choudhury, N., Jacques, S. L., Wang, R. K., Shi, X., & Nuttall, A. L. (2011). A differentially amplified motion in the ear for near-threshold sound detection. Nature Neuroscience, 14, 770–774.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper, N. P., & Guinan, J. J. (2003). Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. Journal of Physiology (London), 548, 307–312.

    Google Scholar 

  • Cooper, N. P., & Guinan, J. J. Jr. (2006). Efferent-mediated control of basilar membrane motion. Journal of Physiology, 576, 49–54.

    CAS  PubMed  Google Scholar 

  • Dallos, P., & Fakler, B. (2002). Prestin, a new type of motor protein. Nature Revues in Molecular and Cellular Biology, 3, 104–111.

    CAS  Google Scholar 

  • Dallos, P., He, D. Z., Lin, X., Sziklai, I., Mehta, S., & Evans, B. N. (1997). Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. Journal of Neuroscience, 17, 2212–2226.

    CAS  PubMed  Google Scholar 

  • Dallos, P., Wu, X., Cheatham, M. A., Gao, J., Zheng, J., Anderson, C. T., Jia, S., Wang, X., Cheng, W. H., Sengupta, S., He, D. Z., & Zuo, J. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron, 58, 333–339.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dannhof, B. J., & Bruns, V. (1991). The organ of Corti in the bat Hipposideros bicolor. Hearing Research, 53, 253–268.

    CAS  PubMed  Google Scholar 

  • Davis, H. (1982). An active process in cochlear mechanics. Hearing Research, 9, 79–90.

    Google Scholar 

  • Deak, L., Zheng, J, Orem, A., Du, G. G., Aguinaga, S., Matsuda, K., & Dallos, P. (2005). Effects of cyclic nucleoticles on the function of prestin. Journal of Physiology (London), 563, 483–496.

    Google Scholar 

  • Didier, A., & Cazals, Y. (1989). Acoustic responses recorded from the saccular bundle on the eighth nerve of the guinea pig. Hearing Research, 37(2),123–127.

    Google Scholar 

  • Dulon, D., Zajic, G., & Schacht, J. (1990). Increasing intracellular free calcium induces circumferential contractions in isolated cochlear outer hair-cells. Journal of Neuroscience, 10, 1388–1397.

    Google Scholar 

  • Dulon, D., Blanchet, C., & Laffon, E. (1994). Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochemical Biophysical Research Communications, 201, 1263–1269.

    CAS  PubMed  Google Scholar 

  • Elgoyhen, A. B., & Franchini, L. F. (2011). Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals. Hearing Research, 273, 100–108.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elgoyhen, A. B., & Katz, E. (2012). The efferent medial olivocochlear-hair cell synapse. Journal of Physiology Paris, 106(1–2):47–56.

    Google Scholar 

  • Evans, M. G. (1996). Acetylcholine activates two currents in guinea-pig outer hair cells. Journal of Physiology, 491, 563–578.

    CAS  PubMed  Google Scholar 

  • Fang, J., Izumi, C., & Iwasa, K. H. (2010). Sensitivity of prestin-based membrane motor to membrane thickness. Biophysical Journal, 98, 2831–2838.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fay, R. R., (1988). Hearing in Vertebrates: a Psychophysics Databook. Hill-Fay Associates, Winnetka, IL.

    Google Scholar 

  • Fettiplace, R., & Hackney, C. M. (2006). The sensory and motor roles of auditory hair cells. Nature Revue of Neuroscience, 7, 19–29.

    CAS  Google Scholar 

  • Fex, J. (1967). Efferent inhibition in the cochlea related to hair-cell dc activity: Study of postsynaptic activity of the crossed olivocochlear fibres in the cat. Journal of the Acoustical Society of America, 41, 666–675.

    CAS  PubMed  Google Scholar 

  • Flock, A., Flock, B., Fridberger, A., Scarfone, E., & Ulfendahl, M. (1999). Supporting cells contribute to control of hearing sensitivity. Journal of Neuroscience, 19, 4498–4507.

    CAS  PubMed  Google Scholar 

  • Franchini, L. F., & Elgoyhen, A. B. (2006). Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Molecular Phylogenetics and Evolution, 41, 622–635.

    CAS  PubMed  Google Scholar 

  • Frank, G., Hemmert, W., & Gummer, A. W. (1999). Limiting dynamics of high frequency electromechanical transduction of outer hair cells. Proceedings of the National Academy of Sciences of the USA, 96, 4420–4425.

    CAS  PubMed  Google Scholar 

  • Fridberger, A., Flock, A., Ulfendahl, M., & Flock, B. (1999). Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proceedings of the National Academy of Sciences of the USA, 95, 7127–7132.

    Google Scholar 

  • Fridberger, A., Tomo, I., Ulfendahl, M., & Boutet de Monvel, J. (2006). Imaging hair cell transduction at the speed of sound: Dynamic behavior of mammalian stereocilia. Proceedings of the National Academy of Sciences of the USA, 103, 1918–1923.

    CAS  PubMed  Google Scholar 

  • Frolenkov, G. I., Mammano, F., Belyantseva, I. A., Coling, D., & Kachar, B. (2000). Two distinct Ca2+-dependent signaling pathways regulate the motor output of cochlear outer hair cells. Journal of Neuroscience, 20, 5940–5948.

    CAS  PubMed  Google Scholar 

  • Frolenkov, G. I., Mammano, F., & Kachar, B. (2003). Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: Underlying mechanism and implications for cochlear mechanics. Cell Calcium, 33, 85–195.

    Google Scholar 

  • Fuchs, P. A. (1992). Ionic currents in cochlear hair cells. Progress in Neurobiology, 39, 493–505.

    CAS  PubMed  Google Scholar 

  • Gao, J., Wang, X., Wu, X., Aguinaga, S., Huynh, K., Jia, S., Matsuda, K., Patel, M., Zheng, J., Cheatham, M., He, D. Z., Dallos, P., & Zuo, J. (2007). Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier. Proceedings of the National Academy of Sciences of the USA, 104, 12542–12547.

    CAS  PubMed  Google Scholar 

  • Gavara, N., Manoussaki, D., & Chadwick, R. S. (2011). Auditory mechanics of the tectorial membrane and the cochlear spiral. Current Opinion in Otolaryngology & Head and Neck Surgery, 19, 382–387.

    Google Scholar 

  • Geisler, C. D., & Sang, C. (1995). A cochlear model using feed-forward outer-hair-cell forces. Hearing Research, 86, 132–146.

    CAS  PubMed  Google Scholar 

  • Guinan, J. J. (1996). Physiology of olivocochlear efferents. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The cochlea (pp. 435–502). New York: Springer-Verlag.

    Google Scholar 

  • Gummer, A. W., Smolders, J. W., & Klinke, R. (1987). Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hearing Research, 29, 63–92.

    CAS  PubMed  Google Scholar 

  • Hallworth, R. (1995). Passive compliance and active force generation in the guinea pig outer hair cell. Journal of Neurophysiology, 74, 2319–2328.

    CAS  PubMed  Google Scholar 

  • He, D. Z., & Dallos, P. (1999). Somatic stiffness of cochlear outer hair cells is voltage dependent. Proceedings of the National Academy of Sciences of the USA, 96, 8223–8228.

    CAS  PubMed  Google Scholar 

  • He, D. Z., Jia, S., & Dallos, P. (2003a). Prestin and the dynamic stiffness of cochlear outer hair cells. Journal of Neuroscience, 23, 9089–9096.

    CAS  PubMed  Google Scholar 

  • He, D. Z., Beisel, K. W., Chen, L., Ding, D. L., Jia, S., Fritzsch, B., & Salvi, R. (2003b). Chick hair cells do not exhibit voltage-dependent somatic motility. Journal of Physiology, 546, 511–520.

    CAS  PubMed  Google Scholar 

  • Heffner, R. S. (2004). Primate hearing from a mammalian perspective. Anatomical Record, 281A, 1111–1122.

    Google Scholar 

  • Heffner, R. S., & Heffner, H. E., (1982). Hearing in the elephant: absolute thresholds, frequency discrimination, and sound localization. Journal of Comparative Physiology and Psychology, 96, 926–944.

    CAS  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992). Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hearing Research, 62, 206–216.

    CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1993). Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. Journal of Comparative Neurology, 331, 418–433.

    CAS  PubMed  Google Scholar 

  • Henson, M. M., & Henson, O. W., Jr. (1979). Some aspects of the structural organization in the cochlea of the bat, Pteronotus parnellii. Scanning Electron Microscopy, 111, 975–979.

    Google Scholar 

  • Henson, M. M., & Henson, O. W., Jr. (1988). Tension fibroblasts and the connective tissue matrix of the spiral ligament. Hearing Research, 35(2–3), 237–258.

    Google Scholar 

  • Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42, 1287–1289.

    CAS  PubMed  Google Scholar 

  • Heth, G., Frankenberg, E., & Nevo, E. (1988). “Courtship” call of subterranean mole rats (Spalax ehrenbergi): Physical analysis. Journal of Mammalogy, 69, 121–125.

    Google Scholar 

  • Housley, G. D., & Ashmore, J. F. (1991). Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proceedings of the Royal Society of London B: Biological Sciences, 244, 161–167.

    CAS  Google Scholar 

  • Iwasa, K. H. (1993). Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophysical Journal, 65, 492–498.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasa, K. H., & Adachi, M. (1997). Force generation in the outer hair cell of the cochlea. Biophysical Journal, 73(1), 546–555.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi, C., Bird, J. E., & Iwasa, K. H. (2011). Membrane thickness sensitivity of prestin orthologs: The evolution of a piezoelectric protein. Biophysical Journal, 100, 2614–2622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob, S., Pienkowski, M., & Fridberger, A. (2011). The endocochlear potential alters cochlear micromechanics. Biophysical Journal, 100, 2586–2594.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson, S. L., Beurg, M., Marcotti, W., & Fettiplace, R. (2011). Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron, 70(6), 1143–1154.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones, G. P., Lukashkina, V. A., Russell, I. J., Lukashkin, A. N. (2010). The vestibular system mediates sensation of low-frequency sounds in mice. Journal of the Association of Research in Otolaryngology, 11(4), 725–732.

    Google Scholar 

  • Kakehata, S., & Santos-Sacchi, J. (1995). Membrane tension directly shifts voltage dependence of outer hair cell motility and associated gating charge. Biophysical Journal, 68, 2190–2197.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Köppl, C. (2011). Birds–—same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273, 65–71.

    PubMed  Google Scholar 

  • Köppl, C., Forge, A., & Manley, G. A. (2004). Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. Journal of Comparative Neurology, 479, 149–155.

    PubMed  Google Scholar 

  • Kössl, M., & Russell, I. J. (1995). Basilar membrane resonance in the cochlea of the mustached bat. Proceedings of the National Academy of Sciences of the USA, 92, 276–279.

    PubMed  Google Scholar 

  • Lange, S., Burda, H., Wegner, R. E., Dammann, P., Begall, S., & Kawalika, M. (2007). Living in a “stethoscope”: Burrow-acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94, 134–138.

    CAS  PubMed  Google Scholar 

  • Legan, P. K., Lukashkina, V. A., Goodyear, R. J., Kössl, M., Russell, I. J., & Richardson, G. P. (2000). A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron, 28, 273–285.

    CAS  PubMed  Google Scholar 

  • Leves, F. P., Tierney, M. L., & Howitt, S. M. (2008). Polar residues in a conserved motif spanning helices 1 and 2 are functionally important in the SulP transporter family. International Journal of Biochemical Cell Biology, 40, 2596–2605.

    CAS  Google Scholar 

  • Li, G., Wang, J. H., Rossiter, S. J., Jones, G., Cotton, J. A., & Zhang, S. Y. (2008). The hearing gene Prestin reunites echolocating bats. Proceedings of the National Academy of Sciences of the USA, 105, 13959–13964.

    CAS  PubMed  Google Scholar 

  • Li, Y., Liu, Z., Shi, P., & Zhang, J. Z. (2010). The hearing gene Prestin unites echolocating bats and whales. Current Biology, 20, R55–56.

    CAS  PubMed  Google Scholar 

  • Lim, D. J. (1986). Functional structure of the organ of Corti: A review. Hearing Research, 22, 117–146.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Cotton, J. A., Shen, B., Han, X. Q., Rossiter, S. J., & Zhang, S. Y. (2010a). Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 20, R53–54.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Rossiter, S. J., Han, X. Q., Cotton, J. A., & Zhang, S. Y. (2010b). Cetaceans on a molecular fast track to ultrasonic hearing. Current Biology, 20, 1834–1839.

    CAS  PubMed  Google Scholar 

  • Long, G., & Schnitzler, H. U., (1975). Behavioral audiograms from the bat Rhinolophus ferrumequinum. Journal of Comparative Physiology A 100, 211–220.

    Google Scholar 

  • Lukashkin, A. N., Walling, M. N., & Russell, I. J. (2007). Power amplification in the mammalian cochlea. Current Biology, 17, 1340–1344.

    CAS  PubMed  Google Scholar 

  • Lukashkin, A. N., Richardson, G. P., & Russell, I. J. (2010). Multiple roles for the tectorial membrane in the active cochlea. Hearing Research, 266, 26–35.

    PubMed  Google Scholar 

  • Mahendrasingam , S., Beurg, M., Fettiplace, R., & Hackney, C. M. (2010). The ultrastructural distribution of prestin in outer hair cells: A post-embedding immunogold investigation of low and high frequency regions of the rat cochlea. European Journal of Neuroscience, 31(9), 1595–1605.

    Google Scholar 

  • Manley, G. A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy of Sciences of the USA, 97(22), 11736–11743.

    CAS  PubMed  Google Scholar 

  • Manley, G. (2011). Lizard auditory papillae: An evolutionary kaleidoscope. Hearing Research, 273, 59–64.

    PubMed  Google Scholar 

  • Manley, G. A., & Jones, T. A. (2011). The development and evolution of a tonotopic organization in the cochlea. Hearing Research, 273, 1–6.

    PubMed  Google Scholar 

  • Markin, V. S., & Hudspeth, A. J. (1995). Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation. Biophysical Journal, 69, 138–147.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto, N., Kitani, R., Maricle, A., Mueller, M., & Kalinec, F. (2010). Pivotal role of actin depolymerization in the regulation of cochlear outer hair cell motility. Biophysical Journal, 99, 2067–2076.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mellado Lagarde, M. M., Drexl, M., Lukashkin, A. N., Zuo, J., & Russell, I. J. (2008). A role for prestin in the frequency tuning of cochlear mechanical responses and their transmission to neural excitation. Current Biology, 18, 200–202.

    CAS  PubMed  Google Scholar 

  • McCue, M. P. & Guinan, J. J. Jr. (1994). Acoustically responsive fibers in the vestibular nerve of the cat. Journal of Neuroscience, 14, 6058–6070.

    CAS  PubMed  Google Scholar 

  • McCue, M. P., & Guinan, J. J. Jr. (1995). Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. Journal of Neurophysiology, 74, 1563–1572.

    CAS  PubMed  Google Scholar 

  • Mountain, D. C., Hubbard, A. E., & McMullen, T. A. (1983). Electromechanical processes in the cochlea. In E. de Boer & M. A. Viergever (Eds.), Mechanics of Hearing (pp. 119–126). Delft, The Netherlands: Delft University Press.

    Google Scholar 

  • Murugasu, E., & Russell, I. J. (1996a). The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. Journal of Neuroscience, 16, 325–332.

    CAS  PubMed  Google Scholar 

  • Murugasu, E., & Russell, I. J. (1996b). The role of calcium on the effects of intracochlear acetylcholine perfusion on basilar membrane displacement in the basal turn of the guinea pig cochlea. Auditory Neuroscience, 2, 363–376.

    CAS  Google Scholar 

  • Neely, S. T., & Kim, D. O. (1983). An active cochlear model showing sharp tuning and high sensitivity. Hearing Research, 9, 123–l 30.

    Google Scholar 

  • Neuweiler, G. (2000). The biology of bats. New York: Oxford University Press.

    Google Scholar 

  • Nilsen, K. E., & Russell, I. J. (1999). Timing of cochlear feedback: Spatial and temporal representation of a tone across the basilar membrane. Nature Neuroscience, 2, 642–648.

    CAS  PubMed  Google Scholar 

  • Nilsen, N., Brownell, W. E., Sun, S. X., & Spector, A. A. (2011). Effect of membrane mechanics on charge transfer by the membrane protein prestin. Biomechanical Models of Mechanobiology, DOI 10.1007/s10237-011-0296-0.

    Google Scholar 

  • Nowotny, M., & Gummer, A. W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proceedings of the National Academy of Sciences of the USA, 103, 2120–2125.

    CAS  PubMed  Google Scholar 

  • Nowotny, M., & Gummer, A. W. (2011). Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. Journal of the Acoustical Society of America, 130, 3852–3872.

    PubMed  Google Scholar 

  • Okoruwa, O. E., Weston, M. D., Sanjeevi, D. C., Millemon, A. R., Fritzsch, B., Hallworth, R., & Beisel, K. W. (2008). Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evolution and Development, 10, 300–315.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J. P., & Fakler, B. (2000). Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron, 26, 595–601.

    CAS  PubMed  Google Scholar 

  • Oliver, D., He, D. Z., Klocker, N., Ludwig, J., Schulte, U., Waldegger, S., Ruppersberg, J. P., Dallos, P., & Fakler, B. (2001). Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science, 292, 2340–2343.

    CAS  PubMed  Google Scholar 

  • Rabbitt, R. D., Clifford, S., Breneman, K. D., Farrell, B., & Brownell, W. E. (2009). Power efficiency of outer hair cell somatic electromotility. PLoS Computational Biology, 5, e1000444.

    PubMed Central  PubMed  Google Scholar 

  • Raphael, Y., & Altschuler, R. A. (2003). Structure and innervation of the cochlea. Brain Research Bulletin, 60, 397–422.

    PubMed  Google Scholar 

  • Raphael, Y., Lenoir, M., Wroblewski, R., & Pujol, R. (1991). The sensory epithelium and its innervation in the mole rat cochlea. Journal of Comparative Neurology, 314, 367–382.

    CAS  PubMed  Google Scholar 

  • Richardson, G. P., Lukashkin, A. N., & Russell, I. J. (2008). The tectorial membrane: One slice of a complex cochlear sandwich. Current Opinion in Otolaryngology & Head and Neck Surgery, 16, 458–464.

    Google Scholar 

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossiter, S. J., Zhang, S., & Liu, Y. (2011). Prestin and high frequency hearing in mammals. Communicative & Integrative Biology, 4, 236–239.

    Google Scholar 

  • Russell, I. J., & Kössl, M. (1991). The voltage responses of hair cells in the basal turn of the guinea-pig cochlea. Journal of Physiology, 435, 493–511.

    CAS  PubMed  Google Scholar 

  • Russell, I. J., & Kössl, M. (1992). Sensory transduction and frequency-selectivity in the basal turn of the guinea-pig cochlea. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 336, 317–324.

    CAS  PubMed  Google Scholar 

  • Russell, I. J., & Kössl, M. (1999). Micromechanical responses to tones in the auditory fovea of the greater mustached bat’s cochlea. Journal of Neurophysiology, 82, 676–686.

    CAS  PubMed  Google Scholar 

  • Russell, I. J., & Lukashkin, A. N. (2008). Cellular and molecular mechanisms in the efferent control of cochlear nonlinearities. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active processes and otoacoustic emissions in hearing (pp. 343–379). New York: Springer.

    Google Scholar 

  • Russell, I. J., & Nilsen, K. E. (2000). The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proceedings of the National Academy of Sciences of the USA, 97, 11751–11758.

    PubMed  Google Scholar 

  • Rybalchenko, V., & Santos-Sacchi, J. (2008). Anion control of voltage sensing by the motor protein prestin in outer hair cells. Biophysical Journal, 95, 4439–4447.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos-Sacchi, J. (1991). Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. Journal of Neuroscience, 11, 3096–3110.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi, J. (1992). On the frequency limit and phase of outer hair cell motility: Effects of the membrane filter. Journal of Neuroscience, 12, 1906–1916.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi, J. (2008). Cochlear mechanics: No shout but a twist in the absence of prestin. Current Biology, 18, R304–306.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi, J., Kakehata, S., & Takahashi, S. (1998a). Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. Journal of Physiology, 510, 225–235.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi, J., Kakehata, S., Kikuchi, T., Katori, Y., & Takasaka, T. (1998b). Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neuroscience Letters, 256, 155–158.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi, J., Song, L., Zheng, J., & Nuttall, A. L. (2006). Control of mammalian cochlear amplification by chloride anions. Journal of Neuroscience, 26, 3992–3998.

    CAS  PubMed  Google Scholar 

  • Schaechinger, T. J., & Oliver, D. (2007). Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proceedings of the National Academy of Sciences of the USA, 104, 7693–7698.

    CAS  PubMed  Google Scholar 

  • Schaechinger, T. J., Gorbunov, D., Halaszovich, C. R., Moser, T., KĂĽgler, S., Fakler, B., & Oliver, D. (2011). A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. EMBO Journal, 30, 2793–2804.

    CAS  PubMed  Google Scholar 

  • Shen, B., Avila-Flores, R., Liu, Y., Rossiter, S. J., & Zhang, S. (2011). Prestin shows divergent evolution between constant frequency echolocating bats. Journal of Molecular Evolution, 73, 109–115.

    CAS  PubMed  Google Scholar 

  • Slepecky, N. B. (1996). Structure of the mammalian cochlea. In P. Dallos, A. N. Popper, R. R. Fay (Eds.), The cochlea (pp. 44–129). New York: Springer.

    Google Scholar 

  • Sridhar, T. S., Brown, M. C., & Sewell, W. F. (1997). Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. Journal of Neuroscience, 17, 428–437.

    CAS  PubMed  Google Scholar 

  • Tan, X., Pecka, J. L., Tang, J., Okoruwa, O. E., Zhang, Q., Beisel, K. W., & He, D. Z. (2011). From zebrafish to mammal: Functional evolution of prestin, the motor protein of cochlear outer hair cells. Journal of Neurophysiology, 105, 36–44.

    PubMed  Google Scholar 

  • Vater, M., & Kössl, M. (1996). Further studies on the mechanics of the cochlear partition in the mustached bat. I. Ultrastructural observations on the tectorial membrane and its attachments. Hearing Research, 94, 63–78.

    CAS  PubMed  Google Scholar 

  • Vater, M., & Kössl, M. (2011). Comparative aspects of cochlear functional organization in mammals. Hearing Research, 273, 89–99.

    PubMed  Google Scholar 

  • Vater, M., & Lenoir, M. (1992). Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. Journal of Comparative Neurology, 31, 83367–83379.

    Google Scholar 

  • Vater, M. Lenoir, M., & Pujol, R. (1992). Ultrastructure of the horseshoe bat’s organ of Corti. 11. Transmission electron microscopy. The Journal of Comparative Neurology, 31, 8380–8391.

    Google Scholar 

  • Weddell, T., Mellado Lagarde, M. M., Lukashkina, V. A., Lukashkin, A. N., Zuo, J., & Russell, I. J. (2011). Prestin links extrinsic tuning to neural excitation in the mammalian cochlea. Current Biology, 21(18), R682–683.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao, Z., & Suga, N. (2002). Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nature Neuroscience, 5, 57–63.

    CAS  PubMed  Google Scholar 

  • Yoon, Y. J., Steele, C. R., & Puria, S. (2011). Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: An interspecies comparison. Biophysical Journal, 100, 1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, E. D., Fernández, C., & Goldberg, J. M. (1977). Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngologica, 84, 352–360.

    CAS  Google Scholar 

  • Yu, N., & Zhao, H. B. (2009). Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. PLoS One, 4, e7923.

    PubMed Central  PubMed  Google Scholar 

  • Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., & Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature, 405, 149–155.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank my research collaborators, Andrei Lukashkin, Victoria, Lukashkina, Marcia Mellado, Thomas Weddell, and Jian Zou for stimulating discussion and George Burwood, Gareth Jones, and Thomas Weddell for comments on the manuscript. Research was supported by the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russell, I. (2013). Roles for Prestin in Harnessing the Basilar Membrane to the Organ of Corti. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_23

Download citation

Publish with us

Policies and ethics