Skip to main content

Sensory Ecology and Neuroethology of the Lateral Line

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

  • 2129 Accesses

Abstract

The sensory ecology and neuroethology of the lateral line provides an overview of the role of the lateral line in natural fish behaviour. The approach is more conceptual than comprehensive, choosing representative behaviors and especially those that lend themselves to a neuroethological analysis. This approach provides a clear focus for the determination of the relevant parameters of the physical stimulus, the physical and physiological mediation of stimulus encoding, and a targeted approach as to how the central nervous system processes and transforms sensory inputs to behavioral action. Like all major sensory systems, the lateral line makes an important contribution to the sensory capabilities of fish and aquatic amphibians and contributes to a wide range of core behaviors. This overview covers the role of the lateral line in: feeding, avoidance of predators, communication, hydrodynamic imaging, and orientation to slow and turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, E. J., Mcgillis, W. R., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. Journal of Experimental Biology, 204, 81–102.

    CAS  PubMed  Google Scholar 

  • Ayali, A., Gelman, S., Tytell, E. D., & Cohen, A. H. (2009). Lateral-line activity during undulatory body motions suggests a feedback link in closed-loop control of sea lamprey swimming. Canadian Journal of Zoology, 87, 671–683.

    Google Scholar 

  • Baker, C. F., & Montgomery, J. C. (1999). The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. Journal of Comparative Physiology A, 184, 519–527.

    Google Scholar 

  • Baker, C. F., Montgomery, J. C., & Dennis, T. E. (2002). The sensory basis of olfactory search behaviour in the banded kokopu (Galaxias fasciatus). Journal of Comparative Physiology A, 188, 553–560.

    Google Scholar 

  • Bartels, M., Münz, H., & Claas, B. (1990). Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. Journal of Comparative Physiology A, 167, 347–356.

    Google Scholar 

  • Bassett, D., Carton, A. G., & Montgomery, J. C. (2006). Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral line-system. Marine and Freshwater Research, 57, 611–617.

    Google Scholar 

  • Bassett, D., Carton, A. G., & Montgomery, J. C. (2007). Saltatory search in a lateral line predator. Journal of Fish Biology, 70, 1148–1160.

    Google Scholar 

  • Behrend, O., Branoner, F., Ziehm, U., & Zhivkov, Z. (2008). Lateral line units in the amphibian brain could integrate wave curvatures. Journal of Comparative Physiology A, 194, 777–783.

    Google Scholar 

  • Bleckmann, H. (1980). Reaction time and stimulus frequency in prey localization of the surface-feeding fish, Aplocheilus lineatus. Journal of Comparative Physiology A, 140, 163–172.

    Google Scholar 

  • Bleckmann, H. (1988). Prey identification and prey localization in surface-feeding fish and fishing spiders. In J. Atema, R.R. Fay, A.N. Popper, W. Tavolga (eds.), Sensory Biology of Aquatic Animals (pp. 619–641). Springer: New York.

    Google Scholar 

  • Bleckmann, H. (1993). Role of the lateral line in fish behaviour. In T. J. Pitcher (ed.), Behaviour of Teleost Fishes (pp. 177–202), London: Chapman and Hall.

    Google Scholar 

  • Bleckmann, H. (1994). Perception of hydrodynamic stimuli in aquatic and semiaquatic animals. In W. Rathmayer (ed.), Progress in Zoology. Vol 41 (pp. 1–115). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Bleckmann, H., & Schwartz, E. (1982). The functional significance of frequency modulation within a wave train for prey localization in the surface feeding Aplocheilus lineatus (Cyprinodontidae). Journal of Comparative Physiology A, 145, 331–339.

    Google Scholar 

  • Bleckmann H., Tittel, G., & Blübaum-Gronau, E. (1989). The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In S. Coombs, P. Görner, H. Münz (eds.), The Mechnosensory Lateral Line. Neurobiology and Behavior (pp. 501–526). New York: Springer.

    Google Scholar 

  • Bleckmann, H., Breithaupt, T., Blickhan, R., & Tautz, J. (1991). The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. Journal of Comparative Physiology A, 168, 749–757.

    CAS  Google Scholar 

  • Bleckmann, H., Przybilla, A., Klein, A., Schmitz, A., Kunze, S., & Brücker, C. (2012). Station holding of Trout: Behavior, Physiology and Hydrodynamics. In C. Tropea, H. Bleckmann (eds.) Nature-inspired fluid mechanics (pp. 161–178). Heidelberg: Springer.

    Google Scholar 

  • Bodznick, D., Montgomery, J. C., & Carey, M. (1999). Adaptive mechanisms in the elasmobranch hindbrain. Journal of Experimental Biology, 202, 1357–1364.

    PubMed  Google Scholar 

  • Braithwaite, V. A., & De Perera, T. B. (2006). Short-range orientation in fish: How fish map space. Marine and Freshwater Behaviour and Physiology, 39, 37–47.

    Google Scholar 

  • Braun, C. B., & Coombs, S. (2010). Vibratory sources as compound stimuli for the octavolateralis systems: Dissection of specific stimulation channels using multiple behavioral approaches. Journal of Experimental Psychology: Animal Behavioral Processes, 36, 243–257.

    Google Scholar 

  • Braun, C. B., Coombs, S., & Fay, R. R. (2002). What is the nature of multisensory interactions between octavolateralis sub-systems? Brain Behavior and Evolution, 59, 162–176.

    Google Scholar 

  • Breder, C. M. (1965). Vortices and fish schools. Zoologica, 50, 97–114.

    Google Scholar 

  • Burt de Perera, T. (2004). Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Animal Behavior, 68, 291–295.

    Google Scholar 

  • Burt de Perera, T., & Braithwaite, V. A. (2005). Laterality in a non-visual sensory modality - the lateral line of fish. Current Biology, 15, 241–242.

    Google Scholar 

  • Campenhausen, C., Riess, I., & Weissert, R. (1981). Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). Journal of Comparative Physiology A, 143, 369–374.

    Google Scholar 

  • Canfield, J. G., & Eaton, R. C. (1990). Swimbladder acoustic pressure transduction initiates mauthner-mediated escape. Nature, 347, 760–762.

    Google Scholar 

  • Carton, A. G., & Montgomery, J. C. (2003). Evidence of rheotactic component in the odor search behaviour of freshwater eels. Journal of Fish Biology, 62, 501–516.

    Google Scholar 

  • Casagrand, J. L., Guzik, A. L., & Eaton, R. C. (1999). Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli. Journal of Neurophysiology, 82, 1422–1437.

    CAS  PubMed  Google Scholar 

  • Claas B, Münz H, Zittlau E (1989) Direction coding in central parts of the lateral line system. In: S Coombs, P Görner, H Münz (eds) The Mechnosensory Lateral Line. Neurobiology and Behavior (pp. 409–420). New York: Springer

    Google Scholar 

  • Coffin, A. B., Ou, H., Owens, K. N., Santos, F., Simon, J. A., Rubel, E. W., & Raible, D. W. (2010). Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish, 7, 3–11.

    CAS  PubMed  Google Scholar 

  • Conley RA, Coombs S (1998) Dipole source localization by mottled sculpin. III. orientation after site-specific, unilateral blockage of the lateral line system. Journal of Comparative Physiology A, 183: 335–334

    CAS  Google Scholar 

  • Coombs, S., & Janssen, J. (1990). Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. Journal of Comparative Physiology A, 167, 557–567.

    CAS  Google Scholar 

  • Coombs, S., & Conley, R. A. (1997). Dipole source localization by mottled sculpin. I. Approach strategies. Journal of Comparative Physiology A, 180, 387–399.

    CAS  Google Scholar 

  • Coombs, S., & Montgomery, J. C. (1994). Structure and function of superficial neuromasts in the Antarctic fish, Trematomus bernacchii. Brain Behavior and Evolution, 44, 287–298.

    CAS  Google Scholar 

  • Coombs, S., & Patton, P. (2009). Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). Journal of Comparative Physiology A, 195, 279–297.

    Google Scholar 

  • Coombs, S., Braun, C. B., & Donovan, B. (2001). The orienting response of lake michigan mottled sculpin is mediated by canal neuromasts. Journal of Experimental Biology, 204, 337–348.

    CAS  PubMed  Google Scholar 

  • Coombs, S., New, J. G., & Nelson, M. (2002). Information-processing demands in electrosensory and mechanosensory lateral line systems. Journal of Physiology - Paris, 96, 341–354.

    Google Scholar 

  • Denton, E. J., & Blaxter, J. H. S. (1976). The mechanical relationships between the clupeid swimbladder, inner ear and the lateral line. Journal of the Marine Biology Association of the United Kingdom, 56, 787–807.

    Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1993). Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philosophical Transactions of the Royal Society B, 341, 113–127.

    Google Scholar 

  • Dijkgraaf. S. (1934). Untersuchungen über die Funktion der Seitenorgane an Fischen. Zeitschrift für Vergleichende Physiology, 20, 162–214.

    Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral-line organs. Biological Reviews, 38, 51–105.

    CAS  PubMed  Google Scholar 

  • Eaton, R. C. & Hackett, J. T. (1984). The role of Mauthner cells in fast-starts involving escape in teleost fish. In R. C. Eaton (ed) Neural Mechanisms of Startle Behavior pp. 213–266. New York: Plenum Press.

    Google Scholar 

  • Eaton, R. C., Bombardieri, R. A., & Meyer, D. L. (1977). The mauthner-initiated startle response in teleost fish. Journal of Experimental Biology, 66, 65–81.

    CAS  PubMed  Google Scholar 

  • Engelmann, J., Hanke, W., Mogdans, J., & Bleckmann, H. (2000). Hydrodynamic stimuli and the fish lateral line. Nature, 408, 51–52.

    CAS  PubMed  Google Scholar 

  • Enquist, M., Leimar, O., Ljunberg, T., Mallner, Y., & Segerdahl, N. (1990). A test of the sequential assessment game: fighting in the cichlid fish Nannacara anomala. Animal Behaviour, 40, 1–14.

    Google Scholar 

  • Faucher, K., Parmentier, E., Becco, C., Vandewalle, N., & Vandewalle, P. (2010) Fish lateral system is required for accurate control of shoaling behaviour. Animal Behaviour, 79, 679–687.

    Google Scholar 

  • Feitl, K. E., Ngo, V., & McHenry, M. J. (2010). Are fish less responsive to a flow stimulus when swimming? Journal of Experimental Biology, 213, 3131–3137.

    PubMed  Google Scholar 

  • Flock Å (1965). Electronmicroscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngology, 199, 1–90.

    Google Scholar 

  • Görner, P. (1973). The importance of the lateral line system for the perception of surface waves in the clawed toad Xenopus laevis Daudin. Experientia 29, 295.

    Google Scholar 

  • Görner, G., & Mohr, C. (1989). Stimulus localization in Xenopus: Role of directional sensitivity of lateral line stitches. In S. Coombs, P. Görner, H. Münz (eds.), The Mechnosensory Lateral Line. Neurobiology and Behavior (pp. 543–560). New York: Springer.

    Google Scholar 

  • Gray, J. A. B., & Denton, E. J. (1991). Fast pressure pulses and communication between fish. Journal of the Marine Biology Association of the United Kingdom, 71, 83–106.

    Google Scholar 

  • Hanke, W., & Bleckmann, H. (2000). The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. Journal of Experimental Biology, 203, 1193–1200.

    CAS  PubMed  Google Scholar 

  • Hanke, W., & Bleckmann, H. (2004). The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. Journal of Experimental Biology, 207, 1585–1596.

    PubMed  Google Scholar 

  • Hanke, W., Wieskotten, S., Niesterok, B., Miersch, L., Witte, M., Brede, M., Leder, A., & Dehnhard, D. (2012) Hydrodynamic perception in pinnipeds. In C. Tropea, H. Bleckmann (eds.) Nature-inspired fluid mechanics (pp. 255–270). Heidelberg: Springer,

    Google Scholar 

  • Hassan, E.S. (1986). On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). Journal of Comparative Physiology A, 159, 701–710.

    CAS  Google Scholar 

  • Hassan, E.S. (1992a). Mathematical-description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis: I. The cases of moving in open water and of gliding towards a plane surface. Biological Cybernetics, 66, 443–452.

    Google Scholar 

  • Hassan, E.S. (1992b). Mathematical-description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis: II. The case of gliding alongside or above a plane surface. Biological Cybernetics, 66, 453–461.

    Google Scholar 

  • Hasler, C. T., Pon, L. B., Roscoe, D. W., Mossop, B., Patterson, D. A., Hinch, S. G., & Cooke, S. J. (2009). Expanding the "toolbox" for studying the biological responses of individual fish to hydropower infrastructure and operating strategies. Environmental Reviews, 17, 179–197.

    Google Scholar 

  • Hoekstra, D., & Janssen, J. (1985). Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environmental Biology of Fishes, 12, 111–117.

    Google Scholar 

  • Hoin-Radkovski, I., Bleckmann, H., & Schwartz, E. (1984). Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Animal Behaviour, 32, 840–851.

    Google Scholar 

  • Jayne, M., Gardiner, J. M., & Atema, J. (2007). Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. Journal of Experimental Biology, 210, 1925–1934.

    Google Scholar 

  • Kalmijn, A. J. (1988). Hydrodynamic and acoustic field detection. In Sensory Biology of Aquatic Animals (J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga, eds.), pp. 83–130. New York: Springer-Verlag.

    Google Scholar 

  • Kanter, M. J. and Coombs, S. (2003). Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). Journal of Experimental Biology, 206, 59–70.

    PubMed  Google Scholar 

  • Kaus,, S., & Schwartz, E. (1986). Reaction of young Betta splendens to surface waves of the water. In F. G. Barth, E. A. Seyfarth (eds). Verhandlungen der Deutschen Zoologischen Gesellschaft (pp. 218–219). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Knudsen, E. I. (1987). Neural derivation of sound source location in the barn owl - an example of a computational map. Annals of the New York Academy of Science, 510, 33–38.

    CAS  Google Scholar 

  • Korn, H., & Faber, D. S. (1975). Inputs from the posterior lateral line nerves upon the goldfish Mauthner cell. I. Properties and synaptic localization of the excitatory component. Brain Research, 17, 342–348.

    Google Scholar 

  • Korn, H., & Faber, D. S. (2005). The Mauthner cell half a century later: A neurobiological model for decision-making? Neuron, 47, 13–28.

    CAS  PubMed  Google Scholar 

  • Lamprecht, J. (1973) Mechanismen des Paarzusammenhaltes beim Cichliden Tilapia mariae Boulenger 1899 (Cichlidae, Teleostei). Zeitschrift für Tierpsychologie, 32, 10–61.

    Google Scholar 

  • Lang, H. H. (1980). Surface wave discrimination between prey and nonprey by the backswimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behavioral Ecology and Sociobiology, 6, 233–246.

    Google Scholar 

  • Liao, J. C. (2007). A review of fish swimming mechanics and behavior in altered flows. Philosophical Transactions of the Royal Society Series B, 362, 1973–1993.

    Google Scholar 

  • Liao, J. C., & Chang, E. Y. (2003). Role of sensory mechanisms in predatory feeding behavior of juvenile red drum Sciaenops ocellatus. Fisheries Science, 69, 317–322.

    CAS  Google Scholar 

  • Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003a). The Kármán gait: Novel kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, 206, 1059–1073.

    PubMed  Google Scholar 

  • Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003b). Fish exploiting vortices decrease muscle activity. Science, 302, 1566–1569.

    CAS  PubMed  Google Scholar 

  • Lighthill, J. (1993). Estimates of pressure differences across the head of a swimming clupeid fish. Philosophical Transactions of the Royal Society Series B, 341, 129–140.

    Google Scholar 

  • McHenry, M. J., Feitl, K. E., Strother, J. A., & Van Trump, W. J. (2009). Larval zebrafish rapidly sense the water flow of a predator's strike. Royal Society Biology Letters, 5, 477–97.

    CAS  Google Scholar 

  • McHenry, M. J., Michel, K. B., Stewart, W., & Müller, U. K. (2010). Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas). Journal of Experimental Biology, 213, 1309–1319.

    CAS  PubMed  Google Scholar 

  • Mirjany, M., Preuss, T., & Faber, D. S. (2011). Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response. Journal of Experimental Biology, 214, 3358–3367.

    PubMed  Google Scholar 

  • Montgomery, J. C. (1989) Lateral line detection of planktonic prey. In: Coombs, S., Gorner, P. & Munz, H. (eds) The Mechanosensory Lateral Line Neurobiology and Evolution. pp 561–574, Springer, New York.

    Google Scholar 

  • Montgomery, J. C. & Saunders, A. J. (1985). Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proceedings of the Royal Society of London B, 224, 197–208.

    CAS  Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1994). An adaptive filter cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neuroscience Letters, 174, 145–148.

    CAS  PubMed  Google Scholar 

  • Montgomery, J. C, & Hamilton, A. R. (1997). The Sensory Biology of Prey Capture in the Dwarf Scorpion Fish (Scorpaena papillosus). Marine and Freshwater Behaviour and Physiology, 30: 209–223.

    Google Scholar 

  • Montgomery, J. C., & Coombs, S. (1998). Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. Journal of Experimental Biology 201, 91–102.

    Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1999). Signals and noise in the elasmobranch electrosensory system. Journal of Experimental Biology, 202, 1349–1355.

    PubMed  Google Scholar 

  • Montgomery, J. C., Clements, K. (2000). Disaptation and recovery in the evolution of Antarctic fish. Trends in Ecology and Evolution, 15, 267–271.

    PubMed  Google Scholar 

  • Montgomery, J. C., Coombs, S., & Janssen, J. (1994). Form and function relationships in lateral-line systems - comparative data from 6 species of antarctic notothenioid fish. Brain Behavior and Evolution, 44, 299–306.

    CAS  Google Scholar 

  • Montgomery, J. C., Bodznick, D., & Halstead, M. B. D. (1996). Hindbrain signal processing in the lateral line system of the dwarf scorpionfish, Scorpeana papillosus. Journal of Experimental Biology, 199, 893–899.

    PubMed  Google Scholar 

  • Montgomery, J. C., Baker, C. F., & Carton, A. G. (1997). The lateral line can mediate rheotaxis in fish. Nature, 389, 960–963.

    CAS  Google Scholar 

  • Montgomery, J. C., Carton, A. G., Voigt, R., Baker, C. F., & Diebel, C. (2000). Sensory processing of water currents by fish. Philosophical Transaction of the Royal Society B, 355, 1325–1327.

    CAS  Google Scholar 

  • Montgomery, J. C., Coombs, S., & Baker, C. F. (2001). The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environmental Biology of Fishes, 62, 87–96.

    Google Scholar 

  • Montgomery, J. C., Macdonald, F., Baker, C. F., & Carton, A. G. (2002). Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behaviour and Evolution, 59, 190–198.

    Google Scholar 

  • Montgomery, J.C., Mcdonald, F., Baker, C.F. Carton, A.G.. & Ling, N. (2003). Sensory integration in the hydrodynamic world of rainbow trout. Proceedings: Biological Sciences, 270, Suppl. 2 195–197.

    Google Scholar 

  • Müller, U., & Schwartz, E. (1982). Influence of single neuromasts on prey localizing behavior of the surface feeding fish, Aplocheilus lineatus. Journal of Comparative Physiology A, 149, 399–408.

    Google Scholar 

  • New, J. G., Fewkes, L. A., & Khan, A. N. (2001). Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. Journal of Experimental Biology, 204, 1207–1221.

    CAS  PubMed  Google Scholar 

  • Palmer, L. M., Deffenbaugh, M., & Mensinger, A. F. (2005). Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). Journal of Experimental Biology, 208, 3441–50.

    PubMed  Google Scholar 

  • Partridge, B. L., & Pitcher, T. J. (1980). The sensory basis of fish schools: Relative roles of lateral line and vision. Journal of Comparative Physiology A, 135, 315–325.

    Google Scholar 

  • Pitcher, T. J., & Parrish, J. K. (1993). Function of shoaling behaviour in teleosts. In T. Pitcher (ed.). Behaviour of Teleost Fishes (pp. 363–439). London: Chapman and Hall.

    Google Scholar 

  • Plath, M., Parzefall, J., Korner, K. E., & Schlupp, I. (2004). Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies. Behavioral Ecology and Sociobiology, 55, 596–601.

    Google Scholar 

  • Pohlmann, K., Grasso, F. W., & Breithaupt, T. (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Science USA, 98, 7371–7374.

    CAS  Google Scholar 

  • Pohlmann, K., Atema, J., & Breithaupt, T. (2004). The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology, 207, 2971–2978.

    PubMed  Google Scholar 

  • Przybilla, A., Kunze, S., Rudert, A., Bleckmann, H., & Brücker, C. (2010). Entraining in trout: A behavioural and hydrodynamic analysis. Journal of Experimental Biology, 213, 2976–2986.

    PubMed  Google Scholar 

  • Pujol-Marti, J., Zecca, A., Baudoin, J., Faucherre, A., Asakawa, K., Kawakami, K., & Lopez-Schier, H. (2011). Neuronal birth order identifies a dimorphic sensorineural map. Journal of Neuroscience, 32, 2976–2987.

    Google Scholar 

  • Ritz, D. A., Hobday, A .J., Montgomery, J. C., & Wardy, A. J. W. (2011). Social aggregation in the pelagic zone with special reference to fish and invertebrates. Advances in Marine Biology, 60, 163–230.

    Google Scholar 

  • Rowe, D. M., Denton, E. J., & Batty, R. S. (1993). Head turning in herring and some other fish. Philosophical Transactions of the Royal Society London B, 341, 141–148.

    Google Scholar 

  • Russell, I. J., & Roberts, B. L. (1972). Inhibition of spontaneous lateral-line activity by efferent nerve stimulation. Journal of Experimental Biology, 57, 77–82.

    Google Scholar 

  • Satou, M., Takeuchi, H.A., Tanabe, M., Kitamura, S., Okumoto, N., & Iwata, M. (1994). Behavioral and electrophysiological evidences that the lateral-line is involved in the inter-sexual vibrational communication of the hime salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Physiology A, 174, 539–549.

    Google Scholar 

  • Saunders, A. J., & Montgomery, J. C. (1985). Field and laboratory studies of the feeding behaviour of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proceedings of the Royal Society of London B, 224, 209–221.

    CAS  Google Scholar 

  • Schwartz, E. (1971). Die Ortung von Wasserwellen durch Oberflachenfische. Zeitschrift für vergleichende Physiologie, 74, 64–80.

    Google Scholar 

  • Schwarz, J. S., Reichenbach, T., & Hudspeth, A. J. (2011). A hydrodynamic sensory antenna used by killifish for nocturnal hunting. Journal of Experimental Biology, 214, 1857–1866.

    PubMed  Google Scholar 

  • Stewart, W. J., & McHenry, M. J. (2010). Sensing the strike of a predator fish depends on the specific gravity of a prey fish. Journal of Experimental Biology, 213, 3769–3777.

    PubMed  Google Scholar 

  • Sutterlin, A. M., & Waddy, S. (1975). Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). Journal of the Fisheries Research Board of Canada, 32, 2441–2446.

    Google Scholar 

  • Taguchi, M., & Liao, J. C. (2011). Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. Journal of Experimental Biology, 214, 1428–1436.

    PubMed  Google Scholar 

  • Teyke, T. (1985). Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). Journal of Comparative Physiology A, 157, 837–843.

    CAS  Google Scholar 

  • Tricas, T. C., & Highstein, S. M. (1991). Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. Journal of Comparative Physiology A, 169, 25–37.

    CAS  Google Scholar 

  • Voigt, R., Carton, A. G., Montgomery, J. C. (2000). Responses of lateral line afferent neurones to water flow. Journal of Experimental Biology, 203, 2495–502.

    CAS  PubMed  Google Scholar 

  • von der Emde, G., & Bleckmann, H. (1998). Finding food: senses involved in foraging for insect larvae in the electric fish, Gnathonemus petersii. Journal of Experimental Biology, 20, 969–980.

    Google Scholar 

  • Walkowiak, W., & Münz, H. (1985). The significance of water-surface waves in the communication of fire-bellied toads. Naturwissenschaften, 72, 49–50.

    Google Scholar 

  • Windsor, S. P., Tan, D., & Montgomery, J. C. (2008). Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). Journal of Experimental Biology, 211, 2950–2959.

    PubMed  Google Scholar 

  • Windsor, S. P., Norris, S., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. Journal of Experimental Biology, 213, 3819–31.

    PubMed  Google Scholar 

  • Windsor, S. P., Norris, S., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. Journal of Experimental Biology, 213, 3832–42.

    PubMed  Google Scholar 

  • Yanase, K., Herbert, N. A., & Montgomery, J. C. (2012) Disrupted flow sensing impairs hydrodynamic performance and increases the metabolic cost of swimming in the yellowtail kingfish, Seriola lalandi. Journal of Experimental Biology (in press; published on-line doi:10.1242/jeb.073437)

Download references

Acknowledgements

We thank Joachim Mogdans and Vera Schlüssel for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montgomery, J., Bleckmann, H., Coombs, S. (2013). Sensory Ecology and Neuroethology of the Lateral Line. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_17

Download citation

Publish with us

Policies and ethics