Skip to main content

Biomarqueurs tissulaires tumoraux. Cancer du sein. Facteurs pronostiques, facteurs prédictifs. Quels standards en 2005 ?

  • Conference paper
  • 257 Accesses

Conclusion

Dans l’évolution potentielle à partir de tests LOEI « gold standards » actuels vers des tests pluriparamétriques, soit protéomiques, soit de biologie moléculaire, il est important de rappeler que toutes les étapes d’évaluation et validation que nous vous avons exposées en début de cette revue générale sont, en fait, à franchir en ce qui concerne la validation de ces nouvelles approches analytiques.

En effet, les résultats obtenus par techniques biochimiques/protéomiques que nous avons exposés en partie ne sont pas transposables pour préjuger ou sélectionner des marqueurs de biologie moléculaire. Si les protéines sont effectivement les acteurs directs des fonctions cellulaires normales ou pathologiques, les taux d’ARN ne sont pas corrélés linéairement au taux de protéines dans un très grand nombre de cas, ceci étant dû au temps de turn-over spécifique de chaque ARN, au rendement de traduction, de processus de maturation, de sauvegarde de stockage intermédiaire de certains ARN.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Early Breast Trialist’s Collaborative Group (1998) Polychemotherapy for early breast cancer: an overview of the randomized trials. Lancet 352: 930–42

    Article  Google Scholar 

  2. Early Breast Trialist’s Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet 351: 1451–67

    Article  Google Scholar 

  3. Mc Guire WL (1991) Breast Cancer Prognostic Factors: evaluation guidelines. JNCI (83): 154–5

    CAS  Google Scholar 

  4. Clark GM (1992) Integrating Prognostic Factors. Breast Cancer Research and Treatment (22): 187–91

    Article  PubMed  CAS  Google Scholar 

  5. Swan N (1998) NIH Panel urges Technology Transfer Reforms. Nature Biotechnology 16–710

    Google Scholar 

  6. Ginsburg GS, Mc Carthy JJ (2001) Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnology 19(12): 491–6

    Article  CAS  Google Scholar 

  7. Hayes DF, Bast RC, Desch CE et al. (1996) Tumor Marker Utility Grading System: a Framework to evaluate Clinical Utility of Tumor Markers. JNCI (88): 1456–66

    PubMed  CAS  Google Scholar 

  8. Hayes DF, Tock B, Harris AL et al. (1998) Assessing the Clinical Impact of Prognostic Factors = When is « Statistically significant » clincally useful? Breast Cancer Research and Treatment (52): 305–19

    Article  PubMed  CAS  Google Scholar 

  9. Ellis MJ, Hayes DF (1999) Refining Breast Cancer Risk Assessment with Molecular Marker = the Next Step? JNCI (91): 2067–8

    Article  PubMed  CAS  Google Scholar 

  10. Bast RC, Raudin P, Hayes DF et al. (2001) Update of Recommendations for the use of Tumor Markers in Breast and Colorectal Cancer = Clinical Practice Guidelines of the American Society of Clinical Oncology. T Clin Oncol (19): 1865–78

    Google Scholar 

  11. Davidson NE (2002) Breast Cancer Consensus Meetings. Vivre la différence. J Clin Oncol (20): 1719–20

    PubMed  Google Scholar 

  12. Marlan LC, Abrams J, Warren JL et al. (2002) Adjuvant Therapy for Breast Cancer: Practrice Patterns of Community Physicians. J Clin Oncol (20): 1809–17

    Article  Google Scholar 

  13. National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement, Adjuvant Therapy for Breast Cancer. Nov 1–3 2000. JNCI (93): 979–89

    Article  Google Scholar 

  14. Goldhrish A, Glick JH, Gether RD et al. (2001) Meeting Highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. J Clin Oncol (19): 3817–27

    Google Scholar 

  15. ESMO (2001) Minimum Clinical Recommendations for Diagnosis, Adjuvant Treatment and follow up of primary breast cancer. Annals of Oncology (12): 1047–8

    Article  Google Scholar 

  16. Foekens JA, Berns EMJJ, Look MP et al. (1996), Dr Daniel den Hoed Cancer Center, Rotterdam, The Netherlands. Prognostic Factors in Node-Negative Breast Cancer. In “Hormone-Dependent Cancer”, edited by Jorge R Pasqualini and Benita S Katzenellenbogen, Marcel Dekker, inc, 217–53

    Google Scholar 

  17. Klijn JGM, Berns EMJJ, Foekens JA (1999) Prognostic and Predictive Factors in Breast Cancer. In “Contemporary Endocrinology: Endocrinology of Breast Cancer”, edited by A. Manni, Humana Press, inc, 205–20

    Google Scholar 

  18. Klijn JGM, Berns EMJJ, Foekens JA (2002) Prognostic and Predictive Factors and Targets for Therapy in Breast Cancer. Dr Daniel den Hoed Cancer Center and Erasmus University Medical Center, Rotterdam, The Netherlands. In ‘Breast Cancer: Prognostic Treatment and Prevention, edited by Jorge R. Pasqualini, Marcel Dekker, inc, 93–124

    Google Scholar 

  19. Clark GM (2000) Prognostic and Predictive Factors. In “Disease of the Breast”, 2nd edition, edited by Jay R. Harris, Lippincott Williams & Wilkins: 489–514

    Google Scholar 

  20. Spyratos F, Martin PM, Hacène K et al. (1992) Multiparametric prognostic evaluation of biological factors in primary breast cancer. JNCI (84): 1266–71

    PubMed  CAS  Google Scholar 

  21. Grondahl Hansen J, Kristensen P, Rosenquist C et al. (1993) High levels of urokinase-type plasminogen activtor and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53: 2513–21

    PubMed  CAS  Google Scholar 

  22. Foekens JA, Schmitt M, van Putten WLJ et al. (1994) Plasminogen Activator Inhibitor —1 and Prognosis in Primary Breast Cancer. J Clin. Oncol (12): 1648–58

    PubMed  CAS  Google Scholar 

  23. Look MP, van Putten WLJ, Duffy MJ et al. (2002) Pooled Analysis of Prognostic Impact of Urokinase-type Plasminogen Activator and its Inhibitor PAI 1 in 8377 Breats Cancer Patients. JNCI (94): 116–28

    PubMed  CAS  Google Scholar 

  24. Bouchet C, Hacène K, Martin PM et al. (1999) A dissemination risk index based on plasminogen activator system components in primary brest cancer. J Clin Oncol: 3048–57

    Google Scholar 

  25. Thomssen C, Janicke F, Kaufmann et al. (2000) Current Controversies in Cancer Do we need better prognostic factors in node-negative breast cancer? European Journal of Cancer (36): 293–306

    Article  PubMed  CAS  Google Scholar 

  26. Jänicke F, Prechtl A, Thomssen C et al. (2001) Randomized adjuvant chemotherapy trial in high-risk, lymph Node-Negative Breast Cancer Patients Identified by urokinase-type plasminogen Activator and Plasminogen Activator Inhibitor type 1. JNCI (93): 913–20

    Article  PubMed  Google Scholar 

  27. Stephenson J (2001) Study indicates Utility for New Breast Cancer Prognostic Marker. JAMA 285(24) 3077–8

    Article  PubMed  CAS  Google Scholar 

  28. Harbeck N, Kates RE, Schmitt M (2002) Clinical Relevance of Invasion factors urokinase type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol (20): 1000–7

    Article  PubMed  Google Scholar 

  29. Harbeck N, Kates RE, Look MP et al. (2002) Enchanced Benefit from adjuvant chemotherapy in Breast Cancer Patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogene activator inhibitor type 1 (n = 3424). Cancer Research (62): 4617–22

    PubMed  CAS  Google Scholar 

  30. Dano K, Andreasen PA, Grondahl Hansen J et al. (1985) Plasminogen activators, tissue degradation and cancer. Adv Cancer Res 44: 139–266

    Article  PubMed  CAS  Google Scholar 

  31. Pyke C, Kristensen P, Ralfkiaer E et al. (1991) The plasminogen activtion system in human colon cancer: messenger RNA for inhibitor PAI-1 is located in endothelial cells in the tumor stroma. Cancer Res 51: 4067–71

    PubMed  CAS  Google Scholar 

  32. Liotta LA, Stetler Stevenson WG, Steeg PS (1991) Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest 9: 543–51

    PubMed  CAS  Google Scholar 

  33. Kirschke H (1998) Lysosomal cysteine peptidases and malignant tumours. Adv Exp Med Biol 421: 253–57

    Google Scholar 

  34. Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161–95

    PubMed  CAS  Google Scholar 

  35. Knauper V, Will H, Lopez Otin C et al. (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271: 17124–31

    Article  PubMed  CAS  Google Scholar 

  36. Mazzieri R, Masiero L, Zanetta L et al. (1997) Control of type IV collegenase activity by components of the urokinase-plasmin system-a regulatory mechanism with cell-bound reactants. EMBO Journal 16: 2319–32

    Article  PubMed  CAS  Google Scholar 

  37. Okimira Y, Sato H, Seiki M et al. (1997) Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin-a possible cell surface activator. FEBS Letters 402: 181–4

    Article  Google Scholar 

  38. Murphy G, Ward R, Gavrilovic J et al. (1992) Physiological mechanisms for metalloproteinase activation (Matrix Suppl) I: 224–30

    Google Scholar 

  39. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nature Reviews (2): 161–73

    Article  PubMed  CAS  Google Scholar 

  40. Collen D (1980) On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost 43: 77–89

    PubMed  CAS  Google Scholar 

  41. Murphy G, Atkinson S, Ward R et al. (1992) The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann. NY Acad Sci 667: 1–12

    PubMed  CAS  Google Scholar 

  42. Ellis V, Pyke C, Eriksen J et al. (1992) The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann NY Acad Sci 667: 13–31

    PubMed  CAS  Google Scholar 

  43. HE CS, Wilhelm SM, Pentland AP et al. (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA, 2632–6

    Google Scholar 

  44. Baramova EN, Bajou K, Remacle A et al. (1997) Involvement of pa/plasmin system in the processing of pro-mmp-9 and the second step of pro-mmp-2 activation. FEBS Letters 405: 157–62

    Article  PubMed  CAS  Google Scholar 

  45. Lyons RM, Gentry LE, Purchio AF et al. (1990) Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110: 1361–7

    Article  PubMed  CAS  Google Scholar 

  46. Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factorbeta1-like molecule by plasmin during co-culture. J Cell Biol 109: 309–15

    Article  PubMed  CAS  Google Scholar 

  47. Ossowski L, Quigley JP, Kellerman GM et al. (1973) Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar and cell migration. J Exp Med 138: 1056–64

    Article  PubMed  CAS  Google Scholar 

  48. Vavani J, Orr W, Ward PA (1979) Cell-associated proteases affect tumour cell migration in vitro. J Cell Sci 26: 241–52

    Google Scholar 

  49. Mawatari M, Okamura K, Matsuda T et al. (1991) Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192: 574–80

    Article  PubMed  CAS  Google Scholar 

  50. Morimoto K, Mishima H, Nishida T et al. (1993) Role of urokinase type plasminogen activator (u-PA) in corneal epithelial migration. Thromb Haemost 69: 387–91

    PubMed  CAS  Google Scholar 

  51. O’Reilly MS, Holmgren L, Shing Y et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79: 315–28

    Article  PubMed  CAS  Google Scholar 

  52. O’Reilly MS, Holmgren L, Chen C et al. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Medicine 2: 689–92

    Article  PubMed  CAS  Google Scholar 

  53. Schousboe I, Feddersen K, Rojkjaer R (1999) Factor XIIa is a kinetically favorable plasminogen activator (in process citation). Thromb Haemost 82:1041–6

    PubMed  CAS  Google Scholar 

  54. Grondahl-Hansen J, Ralkiaer E, Kirkeby LT et al. (1991) Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am J Pathol 138: 111–7

    PubMed  CAS  Google Scholar 

  55. Pyke C, Kristensen P, Ralfkiaer E et al. (1991) Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol 138: 1059–67

    PubMed  CAS  Google Scholar 

  56. Ossowski L, Reich E (1983) Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611–9

    Article  PubMed  CAS  Google Scholar 

  57. Konkle BA, Ginsburg D (1988) The addition of endothelial cell growth factor and heparin to human umbilical vein endothelial cell cultures decreases plasminogen activator inhibitor-1 expression. J Clin Inves 82: 579–85

    Article  CAS  Google Scholar 

  58. Mignatti P, Robbins E, Rifkin DB (1986) Tumor invasion through the human amniotic membrane l requirement for a proteinase cascade. Cell 47: 487–98

    Article  PubMed  CAS  Google Scholar 

  59. Axelrod JH, Reich R, Miskin R (1989) Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of Hras-transformed NIH 3T3 cells. Mol Cell Biol 9: 2133–41

    PubMed  CAS  Google Scholar 

  60. Cajot JF, Barnat J, Bergonzelli GE. et al. Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinomal cells. Proc Natl Acad Sci USA 1990, 87: 6939–43.

    PubMed  CAS  Google Scholar 

  61. Hollas W, Blasi F, Boyd D (1991) Role of the urokinase receptor in facilitating extracellular matrix invasion by cultured colon cancer. Cancer Res 51:3690–5

    PubMed  CAS  Google Scholar 

  62. Kobayashi H, Ohi H, Sugimura M et al. (1992) Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B Cancer 52: 3610–4

    CAS  Google Scholar 

  63. Wilhelm O, Schmitt M, Hohl S et al. (1995) Antisens inhibiion of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis 13:296–302

    Article  PubMed  CAS  Google Scholar 

  64. Holst-Hansen C, Johannessen B, Hoyer-Hansen G et al. (1996) Urokinasetype plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis 14: 297–307

    PubMed  CAS  Google Scholar 

  65. Shapiro RL, Duquette JG, Roses DF et al. (1996) Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activato (upa)-deficient and wild-type mice-cellular blue nevi invade but do not progress to malignant melanoma in upa-deficient animals. Cancer Res 56: 3597–604

    PubMed  CAS  Google Scholar 

  66. Jensen EV, Jacobson HI, Smith S et al. (1972) The use of estrogen antagonists in hormone receptor studies. Hormones and antagonists. Gynec Invest 3:108–23

    CAS  Google Scholar 

  67. McGuire WL (1980) Stéroid hormone receptors in breast cancer treatment sssstrategy. In: Recent progress in hormone research, Ed RO Greep, Academic Press, New York 30: 135–58

    Google Scholar 

  68. Heusson JC, Mattheiem WH, Longeval E et al. (1976) Clinical significance of the quantitative assessment of estrogen receptors in breast cancer. In: Hormones and breast cancer. M. Namer, CM Lalanne ed, INSERM Pub, Paris 55: 57–70

    Google Scholar 

  69. McGuire WL (1978) Hormone receptors; their role in predicting prognosis and response to endocrine therapy. Semin Oncol 5: 428–33

    PubMed  CAS  Google Scholar 

  70. Nomura Y, Miura S, Koyama H et al. (1992) Relative effect of steroïd hormone receptors on the prognosis of patients with operable breast cancer. Cancer 69: 153–64

    PubMed  CAS  Google Scholar 

  71. Raemaekers JMM, Beex IVAM, Pieters GFFM et al. (1987), the Breast Cancer Study Group. Progesterone receptor acstivity and relapse-free survival in patients with primary breast cancer: the role of adjuvant chemotherapy. Breast Cancer Res Treat 9: 191–9

    Article  PubMed  CAS  Google Scholar 

  72. Spyratos F, Hacene K, Tubiana-Hulin M et al. (1989) Prognostic value of estrogen and progesterone receptors in primary infiltrating ductal beast cancer. A sequential multivariate analysis of 1262 patients. Eur J Cancer Clin Oncol 25: 1233–40

    Article  PubMed  CAS  Google Scholar 

  73. Ravdin PM, Green S, Dorr TM et al. (1992) Prognostic significance of progesterone receptor levels in estrogen receptor positive patients with metastatic breast cancer treated with tamoxifen: results of prospective. Southwest oncology group study. J Clin Oncol 10: 1284–91

    PubMed  CAS  Google Scholar 

  74. Gion M, Mione R, Pappagallo GL et al. (1993) PS2 in breast cancer — alternative or complementary tool to steroïd receptor statut? Evaluation of 446 cases. Br J Cancer 68: 374–9

    PubMed  CAS  Google Scholar 

  75. EORTC XIII (1995) Steroïd receptor distribution in 47892 breast cancers. A collaborative study of 7 european laboratories. Romain S Lainé-Bidron C, Martin PM., Magdelenat H, on behalf of the EORTC Receptor Study group. Europ J Cancer 31A, 411–7

    Article  CAS  Google Scholar 

  76. EORTC XIV (1996) Improvement of quality control for steroïd receptor measurements: analysis of distribution in more than 40 000 primary breast cancers. Romain S, Spyratos F, Goussard J, Formento JL, Magdelenat H, on behalf of French Study Group on Tissue and Molecular Biopathology. Breast Cancer Treat (in press)

    Google Scholar 

  77. Martin PM, Rolland PH, Jacquemier J et al. (1979) Multiple steroïd receptors in human breast cancer. II/Estrogen and progestin receptors of 672 primary tumors. Cancer Chemother Pharmacol 2: 107–13

    Article  PubMed  CAS  Google Scholar 

  78. Martin PM, Rolland PH, Jacquemier J et al. (1979) Multiple steroïd receptors in human breast cancer. III/Relationships between steroîd receptors and the state of differenciation and the activity of carcinomas throughout the pathologic features. Cancer Chemother Pharmacol 2: 115–20

    PubMed  CAS  Google Scholar 

  79. EORTC I (1973) Standards for the assessment of estrogen receptors. Report of e workshop on september 29, 1972, at the Antoni Van Leeuwenhoek-Huis, Amsterdam. Europ J Cancer 2: 379–81

    Google Scholar 

  80. EORTC II (1980) Revision of the standards for the assessments of hormone receptors in human breast cancser; report of the second EORTC Workshop, Hels on 16–17 march, 1979, in the Netherlands Cancer Institute. Europ J Cancer

    Google Scholar 

  81. EORTC III (1983) Standardisation of steroïd receptor assays in human breast cancer. I) Reproductibility of estradiol and progesterone receptor assays. Koenders A, Thorpe SM (on behalf of the EORTC Receptor Group). Eur J Cancer Clin Oncol 19: 1221–9

    Article  PubMed  CAS  Google Scholar 

  82. EORTC IV (1983) Standardisation of steroïd receptor assays in human breast cancer. II) Samples with low receptor content. Thorpe S.M. (on behalf of the EORTC Receptor Group). Eur J Cancer Clin Oncol 19: 1467–72

    PubMed  Google Scholar 

  83. EORTC V (1986) Standardisation of steroïd receptor assays in human breast cancer. III) Selection of reference material for intra-and inter-laboratory quality control. Thorpe SM, Koenders A (on behalf of the EORTC Receptor Group). Eur J Cancer Clin Oncol 22: 939–44

    Article  PubMed  CAS  Google Scholar 

  84. EORTC VI (1986) Standardisation of steroïd receptor assays in human breast cancer. IV) Long-term within-and between-laboratory variation of estrogen and progesterone receptor assays. Koenders A, Thorpe SM (on behalf of the EORTC Receptor Group). Eur J Cancer Clin Oncol 22: 945–52

    Article  PubMed  CAS  Google Scholar 

  85. EORTC VII (1988) Impact of standardization of estrogen and progesterone receptor assays of breast cancer biopsies in Denmark. Thorpe SM, Pousen HS, Pedersen KO, Rose C, Eur J Cancer Clin Oncol 24: 1263–9

    Article  PubMed  CAS  Google Scholar 

  86. EORTC VIII (1990) Comparison of ligand binding assay (LBA) and enzyme immunoassay (EIA) for assessment of the oestrogen receptor content of human breast cancer cytosols. Experience of the EORTC Receptor Group. Blackenstein M.A. (on behalf of the EORTC Receptor Group). Br Cancer Res Treatm 17: 91–8

    Article  Google Scholar 

  87. EORTC IX (1991) Determination of estrogen receptors: application of the passing-bablock linear. Regression technique for comparison of enzyme immunoassay and radioligand binding assay in 1841 breast cancer tumours. Romain S, Dussert C, Martin PM, Eur J Cancer 27: 715–20

    Article  PubMed  CAS  Google Scholar 

  88. EORTC X (1992) Quality control of cathepsin-D measurement by the EORTC receptors study group. Benraad TJ, Geurts-Moespot A, Sala M, Piffanelli A, Ross A, Foekens JA (on behalf of the EORTC Receptor Group). Eur J Cancer 28: 72–5

    Article  PubMed  CAS  Google Scholar 

  89. EORTC XI (1992) Multilaboratory assessment of tissue prognostic factors in breast cancer: the EORTC receptor study group experience. Blankenstein MA, Benraad TJH, Breast Cancer 1992, Proceedings of the Ist International Breast Conference, London Regional Cancer Centre (18–19 sept. 1992, London, Ontario), KS Tonkin and AM Smith (eds) Rodard Publis, Montreal: 58–64

    Google Scholar 

  90. EORTC XII (1994) Interlaboratory comparison of estrogen receptor data. Thorpe SM Eur J Cancer 30A: 730–2

    Google Scholar 

  91. Early Breast Cancer Trialists’ Collaborative Group (1992) Systemic Treatment involving 31 000 recurrences and 24 000 deaths among 75 000 women. The Lancet 339, 1–15: 71–85

    Google Scholar 

  92. Brown M (1994) Estrogen receptor molecular biology. Breast Cancer 8: 101–12

    CAS  Google Scholar 

  93. Clarcke R, Dickson RB, Lippman ME (1992) Hormonal aspects of breast cancer. Crit Rev Oncol Hematol 12: 1–23

    Google Scholar 

  94. Osborne CK (1991) Receptors. In “Breast Diseases” Harris JR (eds), Lippincott JB. Philadelphia: 301–25

    Google Scholar 

  95. Ravclin PM, Green S, Dorr TM et al. (1992) Prognostic significance of progesterone levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology group study. J Clin Oncol (10): 1284–92

    Google Scholar 

  96. Leclercq G, Bojar M, Goussard J et al. (1986) Abbott monoclonal enzyme immunoassay measurement of estrogen receptors in human breast cancer: a European multicenter study. Cancer Res (46): 42335–405

    Google Scholar 

  97. Allred DC (1993) Should immunohistochemical examination replace biochemical hormone receptor assays in breast cancer? Am J Clin Pathol 99: 1–2

    PubMed  CAS  Google Scholar 

  98. McClelland RA, Wilson D, Leake R et al. (1991) A multicentre study into the reliability of steroïd receptor immunocytochemical assay quantification. Eur J Cancer 6: 711–5

    Google Scholar 

  99. Charpin C, Martin PM, De Victor B et al. (1998) Multiparametric study (SAMBA 200) of estrogen receptor immunocytochemical assay in 400 human breast carcinomas: analysis of estrogen receptor distribution heterogeneity in tissues and correlations with dextran coated charcoal assays and morphological data. Cancer Res (48): 1578–86

    Google Scholar 

  100. Blanco G, Holli K, Heikkinen M et al. (1990 Jul) Prognostic factors in recurrent breast cancer: relationship to site of recurrence, disease-free interval, female sex steroïd receptors, ploïdy and histological malignancy grading. Br J Cancer 62(1): 142–6

    PubMed  CAS  Google Scholar 

  101. Sheikh MS, Garcia M, Pujol P et al. (1994) Why are estrogen receptor negative cancers more aggressive than the estrogen receptor positive breast cancer ? Invasion Metastasis 14: 329–36

    PubMed  Google Scholar 

  102. Romain S, Chinot O, Guirou O et al. (1994) Biological heterogeneity of ER-positive breast cancers in the post-menopausal population Int J Cancer 59:17–9

    PubMed  CAS  Google Scholar 

  103. Rose C, Thorpe SM, Andersen KW (on behalf the Danish Breast Cancer Cooperative Group) (1985) Beneficial effect of adjuvant tamoxifen therapy in primary breast cancer patients with high oestrogen receptor values. Lancet 1: 16–20

    Google Scholar 

  104. Thorpe SM, Christensen IbJ, Rasmussen BB et al. (1993) Short recurrencefree survival associated with high estrogen receptor levels in the natural history of postmenopausal, primary breast cancer. Eur J Cancer 29A: 971–7

    Article  PubMed  CAS  Google Scholar 

  105. Dotzlaw H, Leyghe E, Watson PH, Murphy LC (1996) Expression of estrogen receptor-beta in human breast tumors. J Clin Endocrinol Metab 82: 2371–4

    Article  Google Scholar 

  106. Sparato VS, Price K, Glodhirsh A et al. (1992) For the International Breast Cancer Study Group. Sequential estrogen receptor determinations from primary breast cancer ant at relapse: prognostic and therapeutic relevance. Ann Oncol 3: 733–40

    Google Scholar 

  107. Elledge RM, Fuqua SAW (2000) Estrogen and Progesterone Receptors. In “Disease of the Breast”, 2nd edition, edited by Jay R Harris, Lippincott Williams & Wilkins, 471–88

    Google Scholar 

  108. Kraus WL, McInerney EM, Katzennellenbogen BS (1995) Ligand —dependent transcriptionnally productive association of the amino-and carboxy-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA 92: 12314–8

    PubMed  CAS  Google Scholar 

  109. Horwitz KB, Jackson TA, Bain DL et al. (1996) Nuclear receptor coactivators and corepressors. Mol Endocrin 10: 1167–77

    Article  CAS  Google Scholar 

  110. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11: 657–66

    Article  PubMed  CAS  Google Scholar 

  111. Girault I, Lerebours F, Amarir S et al. (2003) Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCORI expression is predictive of the response to tamoxifen. Clin Cancer Res (4): 1259–66

    Google Scholar 

  112. Cheung KL, Nicholson RI, Blamey RW et al. (2001) Selection of primary breast cancer patients for adjuvant endocrine therapy — is estrogen receptor alone adequate? Breast Cancer Res Treat 65(2) 155–62

    Article  PubMed  CAS  Google Scholar 

  113. Esslimani-Sahla M, Simony-Lafontaine J, Krama A et al. (2004) Estrogen Receptor ß (ERß) Level but Not Its ERßcx Variant Helps to Predict Tamoxifen Resistance in Breast Cancer. Clin Cancer Res 10(17): 5769–76

    Article  PubMed  CAS  Google Scholar 

  114. Yoshinaga K, Inoue H, Utsunomiya T et al. (2004). N-Cadherin Is Regulated by Activin A and Associated with Tumor Aggressiveness in Esophageal Carcinoma. Clin Cancer Res 10(17): 5702–7

    Article  PubMed  CAS  Google Scholar 

  115. Yarden Y, HER2 (2000) Basis Research, Prognosis and Therapy. In “Breast Disease back edition”, IOS Press: 1–152

    Google Scholar 

  116. Révillion F, Bonneterre J, Peyrat JP (1998) ERBB2 Oncogene in Human Breast Cancer and its Clinical Significance. European Journal of Cancer 34(6) 791–808

    Article  PubMed  Google Scholar 

  117. Roux-Dosseto M, Romain S, Dussault N et al. (1989) Correlation of erbB-2 gene amplification with low levels of estrogen and/or progesterone receptors in primary breat cancer. Do erbB-2 products delineate hormone-independent tumors? Growth Factors and Oncogenes. Colloque Inserm/John Libbey Eurotext Ltd; 190: 143–54

    Google Scholar 

  118. Eppenberger-Castori S, Kueng W, Benz C et al. (2001) Prognostic and Predictive Significance of ErbB-2 Breast Tumor Levels Measured by Enzyme Immunoassay. Journal of Clinical Oncology 19(3): 645–56

    PubMed  CAS  Google Scholar 

  119. Ferrero-Paüs M, Hacène K, Tubiana-Hulin M et al. (1999) Re: prognostic importance of low cerbB2 expression. JNCI (91): 1584–85

    Article  Google Scholar 

  120. Hayes DF, Yamauchi H, Broadwater G et al. (2001) Circulating HER-2/erbB-2/c-neu (HER-2) Extracellular Domian as a Prognostic Factor in Patients with Metastatic Breast Cancer: Cancer and Leukomia Group B Study 8662. Clinical Cancer Research (7): 2703–11

    PubMed  CAS  Google Scholar 

  121. Di Leo A, Gancberg D, Larsimont D et al. (2002) HER-2 Amplification and Topoisomerase Iiα Gene Aberrations as Predictive Markers in Node-positive Breast Cancer Patients Randomly Treated Either with an Anthracycline-based Therapy or with Cyclophosphamide, Methotrexate, and 5-Fluorouracil. Clinical Cancer Research (8) 1107–16

    PubMed  Google Scholar 

  122. Klijn JG, Berns EM, Schmitz PIM et al. (1992) The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5 232 patients. Endoc Rev 13: 3–17

    Article  CAS  Google Scholar 

  123. Sainsbury JRC, Needham GK, Farndon JR et al. (1987) Epidermal-growth factor receptor status as predictpor of early recurrence and death from breast cancer. Lancet 1: 1398–402

    PubMed  CAS  Google Scholar 

  124. Klijn JGM, Look PM, Portengen H et al. (1994) The pronostic value of epidermal growth factor receptor (EGF-R) in primary breast cancer: results of a 10 years follow-up study. Breast Cancer Res Treat 29: 73–83

    Article  PubMed  CAS  Google Scholar 

  125. Klijn JGM, Berns EMJJ, Schmitz PIM et al. (1993) Epidermal growth factor receptor (EGF-R) inclinical breast cancer: update 1993. Endocrine Rev Monogr 1: 171–4

    Google Scholar 

  126. Nicholson S, Wright C, Sainsbury JRC et al. (1990) Epidermal growth factor receptor (EGFr) as a marker for poor prognosis in node-negative breast cancer patients: neu and tamoxifen failure. J Steroid Biochem Mol Biol 37: 811–4

    Article  PubMed  CAS  Google Scholar 

  127. Klijn JMG (1999) Pronostic and predictive factors in breast cancer. Contemporary Endocrinology if Breast Cancer. Edited by: A Manni Humana Press Inc, Totowa NJ: 205–20

    Google Scholar 

  128. Kit S (1976) Thymidine kinase, DNA synthesis and cancer. Mol Cell Biochem 11: 161–82

    Article  PubMed  CAS  Google Scholar 

  129. Galloux H, Javre JL, Guerin D et al. (1998) Intérêt pronostique de l’activité thymidine kinase fœtale dans les cancers du sein. CR Acad Sci 306: 89–92

    Google Scholar 

  130. Javre JL, Hannocuhe N, Samperez S et al. (1986) Mise en évidence de thymidine kinase de type fœtal dans les cancers du sein. Bull Cancer 73: 8–16

    PubMed  CAS  Google Scholar 

  131. O’Neill KL, Hoper M, Odling-Smee GW (1992) Can thymidine kinase levels in breast tumors predict disease recurrence. JNCI 84: 1825–8

    PubMed  CAS  Google Scholar 

  132. Romain S, Javre JL, Samperez S et al. (1990) Valeur pronostique de la thymidine kinase dans le cancer du sein. Bull. Cancer 77: 973–83

    PubMed  CAS  Google Scholar 

  133. Romain S, Spyratos F, Guirou O et al. (1994) Technical evaluation of thymidine kinase assay in cytosols from breast cancer. Eur J Cancer 30A: 2163–5

    Article  PubMed  CAS  Google Scholar 

  134. Romain S, Christensen Ibj, Chinot O et al. (1995) Prognostic value of cytosolic thymidine kinase activity as a maker of proliferation in breast cancer. Int J Cancer 614: 7–12

    Google Scholar 

  135. Sakamoto S, Iwama T, Ebucchi M et al. (1986) Increased activities of thymidine kinase isoenzymes in human mammary tumours. Br J Surgery 73: 272–3

    CAS  Google Scholar 

  136. Sakamoto S, Ebucchi M, Iwama T (1993) Relative acstivities of thymidylate synthetase and thymidine kinase in human mammary tumors. Anticancer Res 13: 205–8

    PubMed  CAS  Google Scholar 

  137. Romain S, Bendahl PO, Guirou O et al. (2001) DNA-Synthetizing enzymes in breast cancer (Thymidilate Synthase and thymidylate kinase): association with flow cytometric S-phase fraction and relative prognostic importance in node negative premenopausal patients. Int J Cancer (95): 56–61

    Article  PubMed  CAS  Google Scholar 

  138. Romain S, Martin PM, Klijn JGM et al. (1997) DNA Synthesis enzyme activity: a biological tool useful for predicting anti-metabolic drug sensitivity in breast cancer. Int. J. Cancer. (Pred Oncol) (74): 156–61

    Article  PubMed  CAS  Google Scholar 

  139. Broët P, Romain S, Daver A et al. (2001) Thymidine Kinase as a proliferate marker: clinical relevance in 1692 primary breast cancer patients. J Clin Oncol 19(11): 2278–87

    Google Scholar 

  140. Foekens JA, Romain S, Look MP et al. (2001) Thymidine Kinase and Thymidilate Eynthetase in advanced breast cancer: response to tamoxifen and chemotherapy. Cancer Research (61): 1421–5

    PubMed  CAS  Google Scholar 

  141. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? JNCI (82): 4–6

    PubMed  CAS  Google Scholar 

  142. Eppenberger U, Kueng M, Lueschen K et al. (1998) Markers of tumor angiogenesis and protealysis independently define high and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 16: 3129–36

    PubMed  CAS  Google Scholar 

  143. Gasparini G, Toi M, Gion M et al. (1997) Prognostic significance of vascular endothelial growth factor in node-negative breast carcinoma. JNCI 89: 139–47

    Article  PubMed  CAS  Google Scholar 

  144. Foekens JA, Peters HA, Grebentchikov N et al. (2001) High Tumor Levels of Vascular Endothelial Growth Factor Predict Poor Response to Systemic Therapy in advanced Breast Cancer. Cancer Research (61): 5407–14

    PubMed  CAS  Google Scholar 

  145. Manders P, Beex LV, Tjan-Heijen VL et al. (2002) The Prognostic Value of Vascular Endothelial Growth Factor in 574 Node-Negative Breast Cancer Patients who did not receive adjuvant Systemic Therapy. Br J Cancer 87(7): 772–8

    Article  PubMed  CAS  Google Scholar 

  146. Berns EMJJ, Klijn JGM, Look PM et al. (2003) Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy un estrogen receptor-positive advanced breast cancer. Clin Cancer Res 9: 1253–8

    PubMed  CAS  Google Scholar 

  147. Obernair A, Kurz C, Czerwenka K et al. (1995) Microvessel density and vessel invasion in lymph node-negative breast cancer: effect on recurrence-free survival. Int J Cancer 62: 126–31

    Google Scholar 

  148. Mittra I, Mac Rae KD (1991) A metaanalysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metartasis represent biology or chronology. Eur J Cancer 27: 1574–83

    PubMed  CAS  Google Scholar 

  149. Tubiana-Hulin M, Hacène K, Martin PM et al. (1995) Prognostic factor clustering in breast cancer: biology or chronology. Eur J Cancer 31: 282–3

    Article  Google Scholar 

  150. Fisher EH, Charbonneau H, Tonks NK (1991) Signal transduction by receptors with tyrosine kinase activity. Science 253: 401–6

    Google Scholar 

  151. Cantley LC, Auger KR, Carpenter C (1991) Oncogenes and signal transduction. Cell 64: 281–302

    Article  PubMed  CAS  Google Scholar 

  152. Skorki T (2002) Oncogenic Tyrosine Kinases and the DNA Damage response. Nature Reviews Cancer (2) 1–10

    Article  CAS  Google Scholar 

  153. Bolla M, Rostaing-Puissant B, Chedin M et al. (1993) Protein tyrosine kinase activity as a pronostic parameter in humain breast cancer. Breast Cancer Res Treat 26: 283–7

    Article  PubMed  CAS  Google Scholar 

  154. Durocher Y, Chevalier S (1990) Protein tyrosine kinases in human breast cancer: kinetic properties and evidence for the presence of two forms of native enzyme. Breast Cancer Res Treat 17: 99–107

    Article  PubMed  CAS  Google Scholar 

  155. Hennipman A, Van Oirschot BA, Smits J et al. (1989) Tyrosine kinase activity in breast cancer, benign breast disease and normal breast tissue. Cancer Res 490: 516–21

    Google Scholar 

  156. Lower EE, Williams L (1992) Phosphotyriosine expression in breast cancer specimens is associated with worse prognosis. Proc Amer Assoc Cancer Res 33: 373

    Google Scholar 

  157. Lower EE, Franco RS, Miller MA et al. (1993) Enzymatic and immunohistochemical evaluation of tyrosine phosphorylation in breast cancer specimens. Breast Cancer Res Treat 26: 217–24

    Article  PubMed  CAS  Google Scholar 

  158. Ottenhoff-Kalff AE, Rijksen G, Van Beuden AACM et al. (1992) Characterization of protein tyrosine kinases from human breast cancer: Involvement of the c-src oncogene product. Cancer Res 52: 4773–8

    PubMed  CAS  Google Scholar 

  159. Lloyd AC (2000) P53: only ARF story. Nature Cell Biology 2: E45–E50

    Article  CAS  Google Scholar 

  160. Carnero A, Hudson JD, Price M, Beach DH (2000) P16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biology 2: 148–9

    Article  PubMed  CAS  Google Scholar 

  161. Robert L, Sutherland P (2000) ER signaling onto the cyclin/CDK/Rb pathway. 23rd Annual San Antonio Breast Cancer Symposium. December 6–9

    Google Scholar 

  162. Roux-Dosseto M, Martin PM (1989) A paradigm for oncogene complementation in human breast cancer. Research in Virology 140: 571–91

    PubMed  CAS  Google Scholar 

  163. Berns PMJJ, Klijn JGM, van Staveren IL et al. (1992). Prevalence of amplification of the oncogene c-myc, HER2/neu and int2 in one thousand human breast tumors: correlation with steroid receptors. Eur J Cancer 28: 697–700

    Article  PubMed  CAS  Google Scholar 

  164. Roux-Dosseto M, Romain S, Dussault N et al. (1992) C-Myc gene amplification in selected node-negative breast cancer patients correlates with high rate of early relapse. Europ J Cancer 28 A: 1800–4

    Google Scholar 

  165. Berns PMJJ, Klijn JGM, van Putten WLJ et al. (1992) C-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 52: 1107–13

    PubMed  CAS  Google Scholar 

  166. Deming SL, Nass SJ, Dickson RB et al. (2000) C-myc amplification in breast cancer: a metaanalysis of its occurrence and prognostic relevance. Br J Cancer 83: 1688–95

    Article  PubMed  CAS  Google Scholar 

  167. Borg A (1992) Gene alterations in human breast cancer. In “A Spandidas Edition — Current perspectives on molecular oncology” Vol I, Part B. Cancer genes and their clinical implications. London JAI Press: 21–79

    Google Scholar 

  168. Berns PMJJ, Foekens JA, van Staveren IL et al. (1995) Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene 159: 11–8

    Article  PubMed  CAS  Google Scholar 

  169. Berns PMJJ, Klijn JGM, Foekens JA (1997) Prognostic and predictive significance of P53 protein accumulation in human primary breast cancer analysed with a luminometric immunoassay (LIA) on tumor cytosal. In “Klijn JGM (ed) Prognostic and predictive value of P53 ESO Scientific updates. Vol. I Amsterdam. Elsevier Science BV: 51–63

    Google Scholar 

  170. Broët P, Spyratos F, Romain S et al. (1999) Prognostic value of uPA and p53 accumulation measured by quantitative biochemical assays in 1245 primary breast cancer patients: a multicentre study. Br J Cancer 80: 536–45

    Article  PubMed  Google Scholar 

  171. Elledge RM, Allred DC (1997) P53 status: impact on Breast tumor biology and response to therapy. In ‘Klijn JGM ed Prognostic and predictive value of P53 ESO Scientific updates. Vol. I Amsterdam. Elsevier Science BV: 63–76

    Google Scholar 

  172. Börresen-Dale AL (1997) Subgroup of P53 mutations may predict the clinical behaviour of cancers in the breast and colon and contribute to therapy response. In ‘Klijn JGM ed Prognostic and predictive value of P53 ESO Scientific updates. Vol. I Amsterdam. Elsevier Science BV: 23–33

    Google Scholar 

  173. Berns PMJJ, van Staveren IL, Look MP et al. (1998) Mutations in residues of P53 that directly contact DNA predict poor outcome in human primary breast cancer. Br J Cancer 77: 1130–6

    PubMed  CAS  Google Scholar 

  174. Berns PMJJ, Foekens JA, Vossen R et al. (2000) Complete Sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 60: 2155–62

    PubMed  CAS  Google Scholar 

  175. Geisler S, Lönning PE, Aas T et al. (2001) Influence of TP53 gene alterations and cerbB2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61: 2505–12

    PubMed  CAS  Google Scholar 

  176. Rak J, Yu JL, Kerbel RS et al. (2002) What do Oncogenic Mutations Have to do with Angiogenesis / vascular dependence of tumors. Cancer Res 62: 1931–4

    PubMed  CAS  Google Scholar 

  177. Simone NL, Remaley AT, Charboneau L et al. (2000) Sensitive Immunoassay of tissue cell proteins procured by laser capture microdissection Am J Pathol 156(2): 445–52

    PubMed  CAS  Google Scholar 

  178. Gonzalez-Angulo AM, Sneige N, Buzdar AU et al. (2004) p53 Expression as a Prognostic Marker in Inflammatory Breast Cancer. Clin Cancer Res 10: 6215–21

    Article  PubMed  CAS  Google Scholar 

  179. Dorssers LCJ, Grebenchtchikov N, Brinkman A et al. (2004) The Prognostic Value of BCAR1 in Patients with Primary Breast Cancer. Clin Cancer Res 10: 6194–202

    Article  PubMed  CAS  Google Scholar 

  180. Parrella P, Poeta ML, Gallo AP et al. (2004) Nonrandom Distribution of Aberrant Promoter Methylation of Cancer-Related Genes in Sporadic Breast Tumors. Clin Cancer Res 10: 5349–54

    Article  PubMed  CAS  Google Scholar 

  181. Bae YK, Brown A, Garrett E et al. (2004) Hypermethylation in Histologically Distinct Classes of Breast Cancer. Clin Cancer Res 10: 5998–6005

    Article  PubMed  CAS  Google Scholar 

  182. Dulaimi E, Hillinck J, Ibanez de Caceres I et al. (2004) Tumor Suppressor Gene Promoter Hypermethylation in Serum of Breast Cancer Patients. Clin Cancer Res 10: 6189–93

    Article  PubMed  CAS  Google Scholar 

  183. Taube SE, Gion M, Schilsky L (2004) 3rd EORTC-NCI International Meeting on Cancer Molecular Markers: From Discovery to Clinical Practice. Expert Rev Mol Diagn 4(4): 11–3

    Article  Google Scholar 

  184. Kuerer HM, Coombs KR et al. (2004) Association between ductal fluid proteomic expression profiles and the presence of lymph node metastase in women with breast. Cancer Surgery 136: 1061–9

    Google Scholar 

  185. Bustin SA, Dorudi S (2002) The value of microarray techniques for quantitative gene profiling in molecular diagnostics. TRENDS in Molecular Medicine 8(6): 269–71

    Article  PubMed  CAS  Google Scholar 

  186. Brazma A, Hingamp P, Quackenbush J et al. (2001) Minimum information about a microarray experiement (MIAME) — toward standards for microarray data. Nature Genetics 29: 365–73

    Article  PubMed  CAS  Google Scholar 

  187. Emmert-Buck MR, Strausberg RL, Krizman DB et al. (2000) Molecular profiling of clinical tissue specimens. Feasibility and Applications. Am J Path 156: 1109–15

    PubMed  CAS  Google Scholar 

  188. Bustin SA (2002) Quantification of mRNA using real-time reverse tranbscription PCR (RT-PCR): trends and problems. J Mol End 29: 23–39

    Article  CAS  Google Scholar 

  189. Yanai I, Benjamin H, Shmoish M et al. (2004) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics doi: 10–1093

    Google Scholar 

  190. Weigelt B, Peterse JL, Van’t Veer LJ (2005) Breast Cancer Metartasis Markers and Models. Nature Reviews Cancer 5: 591–602

    Article  PubMed  CAS  Google Scholar 

  191. Ahr A, Holtrich U, Solbach C et al. (2001) Molecular classification of breast cancer patients by gene expression profiling. J Pathol 195: 312–20

    Article  PubMed  CAS  Google Scholar 

  192. Van’t Veer LJ, Dai H, van de Vijver MJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–6

    Article  Google Scholar 

  193. Caldas C, Aparicio SAJ (2002) The molecular outlook. Nature 415: 484–5

    Article  PubMed  CAS  Google Scholar 

  194. Ahr A, Karn T, Solbach C et al. (2002) Identification of high-risk breast-cancer patients by gene expression profiling. The Lancet 359: 131–2

    Article  Google Scholar 

  195. Palmieri C, Vigushin D et al. (2002) Gene-expression profiling and identification of patients at high risk of breast cancer. The Lancet 360: 173–4

    Article  Google Scholar 

  196. Ahr A, Karn T, Solbach C et al. (2002) Identification of high-risk breastcancer patients by gene expression profiling. The Lancet 359: 131–2

    Article  Google Scholar 

  197. Palmieri C, Vigushin D et al. (2002) Gene-expression profiling and identification of patients at high risk of breast cancer. The Lancet 360: 173–4

    Article  Google Scholar 

  198. Bertucci F, Viens P, Hingamp P et al. (2003) Breats cancer revisited using DNA array-based gene expression profiling. Int J Cancer 103: 565–71

    Article  PubMed  CAS  Google Scholar 

  199. Bertucci F, Viens P, Tagett R (2003) DNA arrays in clinical oncology: promises and challenges. Lab Invest 83: 305–16

    PubMed  Google Scholar 

  200. Kang YJ, Dolled-Filhart M, Ocal IT et al. (2003) Tissue microarray analysis of hepatocyte growth factor/met pathway components reveals a role for met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63: 1101–5

    PubMed  CAS  Google Scholar 

  201. Bertucci F, Borie N, Ginestier C et al. (2004) Identification and validation of an ERBB2 gene expression signature in breast cancers Oncogene 23: 2564–75

    Article  PubMed  CAS  Google Scholar 

  202. Ein-Dor L, Kela I, Getz G (2004) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics doi: 10–1093

    Google Scholar 

  203. Biganzoli E, Boracchi P (2004) Old and new markers for breast cancer prognosis: the need for integrated research on quantitative issues. Eur J Cancer 40: 1803–6

    Article  PubMed  Google Scholar 

  204. Edén P, Ritz C, Rose C et al. (2004) « Good old » clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 40: 1837–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag France, Paris

About this paper

Cite this paper

Martin, P.M. (2006). Biomarqueurs tissulaires tumoraux. Cancer du sein. Facteurs pronostiques, facteurs prédictifs. Quels standards en 2005 ?. In: Cancer du sein. Springer, Paris. https://doi.org/10.1007/2-287-31109-2_6

Download citation

  • DOI: https://doi.org/10.1007/2-287-31109-2_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-25174-0

  • Online ISBN: 978-2-287-31109-3

Publish with us

Policies and ethics