Advertisement

Les papillomavirus humains et leur rôle dans l’histoire naturelle du cancer du col de l’utérus. Perspectives dans le domaine de la prévention de ce cancer

Part of the Dépistage et cancer book series (DC)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Parkin DM, Bray F, Ferlay J et al. (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Rotkin ID (1973) A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 33: 1353–67PubMedGoogle Scholar
  3. 3.
    Meisels A, Morin C (1981) Human papillomavirus and cancer of the uterine cervix. Gynecol Oncol 12: S111–S123PubMedCrossRefGoogle Scholar
  4. 4.
    Zur Hausen H (2002) Papillomavirus and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–50PubMedCrossRefGoogle Scholar
  5. 5.
    Orth G (1988) Nouvelles perspectives dans le domaine du dépistage précoce et de la prévention des précurseurs des cancers du col de l’utérus. « Chercher pour Agir, Recherche d’aujourd’hui, Médecine d’aujourd’hui et de demain » 2e Colloque CNAMTS-INSERM 187: 87–94Google Scholar
  6. 6.
    Schiffman M, Herrero R, DeSalle R et al. (2005) The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337: 76–84PubMedCrossRefGoogle Scholar
  7. 7.
    Howley PM, Lowy DR (2001) Papillomaviruses and their replication. In: Fields Virology, Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds). Vol. 2. p 2197–330 Lippincott William & Wilkins: PhiladelphiaGoogle Scholar
  8. 8.
    Orth G (1999) Papillomaviruses-human (Papovaviridae): General features. 2nd edition. In Encyclopedia of Virology (RG Webster and A Granhoff, eds.), vol 2: 1105–14. Academic Press Ltd., LondonGoogle Scholar
  9. 9.
    Ramoz N, Rueda LA, Bouadjar B et al. (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32: 579–81PubMedCrossRefGoogle Scholar
  10. 10.
    Munoz N, Bosch FX, de Sanjosé S et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518–27PubMedCrossRefGoogle Scholar
  11. 11.
    Orth G, Croissant O (1997) Papillomavirus humains et carcinogenèse du col utérin: perspectives dans les domaines du dépistage et de la prévention. Bull Acad Natle Méd 181: 1365–94Google Scholar
  12. 12.
    Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci USA 100: 11830–5PubMedCrossRefGoogle Scholar
  13. 13.
    Münger K, Baldwin A, Edwards KM et al. (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78: 11451–60PubMedCrossRefGoogle Scholar
  14. 14.
    Duensing S, Münger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109: 157–62PubMedCrossRefGoogle Scholar
  15. 15.
    Schiffman M, Kjaer SK (2003) Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr 31: 14–9PubMedGoogle Scholar
  16. 16.
    Iftner T, Villa LL (2003) Human papillomavirus technologies. J Natl Cancer Inst Monogr 31: 80–8PubMedGoogle Scholar
  17. 17.
    Baseman JG, Koutsky LA (2005) The epidemiology of human papillomavirus infections. J Clin Virol 32, Supplement 1: 16–24CrossRefGoogle Scholar
  18. 18.
    Castle PE, Schiffman M, Herrero R et al. (2005) A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste Costa Rica. J Infect Dis 191: 1808–16PubMedCrossRefGoogle Scholar
  19. 19.
    Ho GYF, Bierman R, Beardsley L et al. (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338: 423–8PubMedCrossRefGoogle Scholar
  20. 20.
    Woodman CBJ, Collins S, Winter H et al. (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357: 1831–6PubMedCrossRefGoogle Scholar
  21. 21.
    Winer RL, Lee SK, Hughes JP et al. (2003) Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 157: 218–26PubMedCrossRefGoogle Scholar
  22. 22.
    Winer RL, Kiviat NB, Hughes JP et al. (2005) Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis 191: 731–8PubMedCrossRefGoogle Scholar
  23. 23.
    Moscicki AB, Hills N, Shiboski S et al. (2001) Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 285: 2995–3002PubMedCrossRefGoogle Scholar
  24. 24.
    Schlecht NF, Kulaga S, Robitaille J et al. (2001) Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA 286: 3106–14PubMedCrossRefGoogle Scholar
  25. 25.
    Moscicki AB, Shiboski S, Hills NK et al. (2004) Regression of low-grade squamous intra-epithelial lesions in young women. Lancet 364: 1678–83PubMedCrossRefGoogle Scholar
  26. 26.
    Schlecht NF, Platt RW, Duarte-Franco E et al. (2003) Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst 95: 1336–43PubMedGoogle Scholar
  27. 27.
    Rozendaal L, Walboomers JMM, van der Linden JC et al. (1996) PCR-based high-risk HPV test in cervical cancer screening gives objective risk assessment of women with cytomorphologically normal cervical smears. Int J Cancer 68: 766–9PubMedCrossRefGoogle Scholar
  28. 28.
    Nobbenhuis MAE, Walboomers JMM, Helmerhorst TJM et al. (1999) Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet 354: 20–5PubMedCrossRefGoogle Scholar
  29. 29.
    Ostor AG (1993) Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12: 186–92PubMedGoogle Scholar
  30. 30.
    Melnikow J, Nuovo J, Willan AR et al. (1998) Natural history of cervical squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol 92: 727–35PubMedCrossRefGoogle Scholar
  31. 31.
    Ho GYF, Studentsov YY, Bierman R et al. (2004) Natural history of human papillomavirus type16 virus-like particle antibodies in young women. Cancer Epidemiol Biomarkers Prev 13: 110–6PubMedCrossRefGoogle Scholar
  32. 32.
    Hildesheim A, Wang SS. (2002) Host and viral genetics and risk of cervical cancer: a review. Virus Res 89: 229–40PubMedCrossRefGoogle Scholar
  33. 33.
    Heard I, Tassie JM, Schmitz V et al. (2000) Increased risk of cervical disease among human immunodeficiency virus-infected women with severe immunosuppression and high human papillomavirus load. Obstet Gynecol 96: 403–9PubMedCrossRefGoogle Scholar
  34. 34.
    Sastre-Garau X, Cartier I, Jourdan-Da Silva N et al. (2004) Regression of low-grade cervical intraepithelial neoplasia in patients with HLA-DRB1⋆13 genotype. Obstet Gynecol 104: 751–5PubMedGoogle Scholar
  35. 35.
    Frazer IH (2004) Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4: 46–54PubMedCrossRefGoogle Scholar
  36. 36.
    Hernandez PA, Gorlin RJ, Lukens JN et al. (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34: 70–4PubMedCrossRefGoogle Scholar
  37. 37.
    Bosch FX, Lorincz A, Meijer CJLM et al. (2005) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 22: 244–65Google Scholar
  38. 38.
    Munoz N, Bosch FX, Castellsagué X et al. (2002) Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 111: 278–85CrossRefGoogle Scholar
  39. 39.
    Clifford GM, Smith JS, Plummer M et al. (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88: 63–73PubMedCrossRefGoogle Scholar
  40. 40.
    Clifford GM, Smith JS, Aguado T et al. (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis Br J Cancer 89: 101–5PubMedCrossRefGoogle Scholar
  41. 41.
    Schneider-Maunoury S, Croissant O, Orth G (1987) Integration of human papillomavirus type 16 DNA sequences. A possible early event in the progression of genital tumors. J Virol 61: 3295–8PubMedGoogle Scholar
  42. 42.
    Santin AD, Zhan F, Bignotti E et al. (2005) Gene expression profiles of primary HPV16-and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 331: 269–91PubMedCrossRefGoogle Scholar
  43. 43.
    ASCUS-LSIL Triage Study (ALTS) Group (2003) Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol 188: 1383–92Google Scholar
  44. 44.
    Arbyn M, Buntix F, Van Ranst M et al. (2004) Virologic versus cytologic triage of women with equivocal Pap smears: a meta-analysis of the accuracy to detect high-grade intraepithelial neoplasia. J Natl Cancer Institute 96: 280–93CrossRefGoogle Scholar
  45. 45.
    Herrero R, Hildesheim A, Bratti C et al. (2000) Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer Inst 92: 464–74PubMedCrossRefGoogle Scholar
  46. 46.
    Sherman ME, Schiffman M, Cox JT (2002) Effects of age and human papilloma viral load on colposcopy triage; data from the randomized atypical squamous cells of undermined significance / low-grade squamous intraepithelial lesions triage study (ALTS). J Natl Cancer Inst 94: 102–7PubMedGoogle Scholar
  47. 47.
    Cuzick J, Szarewski A, Cubie H et al. (2003) Management of women who test positive for high-risk types of human papillomavirus: the HART study. Lancet 362: 1871–6PubMedCrossRefGoogle Scholar
  48. 48.
    Agence nationale d’accréditation et d’évaluation en santé (2004) Évaluation de l’intérêt de la recherche des papillomavirus (PVH) dans le dépistage des lésions précancéreuses et cancéreuses du col de l’utérus. (site: www.anaes.fr)Google Scholar
  49. 49.
    Klaes R, Benner A, Friedrich T et al. (2002) p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol 26: 1389–99PubMedCrossRefGoogle Scholar
  50. 50.
    Koutsky LA, Ault KA, Wheeler CM et al. (2002) A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347: 1645–51PubMedCrossRefGoogle Scholar
  51. 51.
    Harper DM, Franco EL, Wheeler C et al. (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomized controlled trial. Lancet 364: 1757–65PubMedCrossRefGoogle Scholar
  52. 52.
    Villa LL, Costa RLR, Petta CA et al. (2005) Prophylactic quadrivalent human papillomavirus (types 6,11,16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet 6: 271–8CrossRefGoogle Scholar
  53. 53.
    Cohen J (2005) High hopes and dilemmas for a cervical cancer vaccine. Science 308: 618–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2005

Authors and Affiliations

  • G. Orth
    • 1
  1. 1.Département de virologieInstitut PasteurParis

Personalised recommendations