Physiopathologie de la défaillance cardiaque

  • C. Rabuel
  • B. Tavernier
  • A. Mebazaa
Part of the Le point sur⋯ book series (POINT)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rackow E, Kaujman B, Falk J et al. (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22: 11–22PubMedGoogle Scholar
  2. 2.
    Ognibene F, Parker M, Natanson C et al. (1988) Depressed left ventricular performance. Response to volume infusion in patients with septic shock. Chest 93: 903–10PubMedGoogle Scholar
  3. 3.
    Poelaert J, Declerck C, Vogalaers D et al. (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23: 553–60CrossRefPubMedGoogle Scholar
  4. 4.
    Jardin F, Fourme T, Page B et al. (1999) Persistent preload defect in severe sepsis despite fluid loading: a longitudinal echocardiographic study in patients with septic shock. Chest 116: 135–9CrossRefGoogle Scholar
  5. 5.
    Tavernier B, Makhotine O, Lebuffe G et al. (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–21CrossRefPubMedGoogle Scholar
  6. 6.
    Parker M, Shelhamer JSB (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Int Med 100: 483–90PubMedGoogle Scholar
  7. 7.
    Parillo J (1990) Myocardial depression during septic shock in humans. Crit Care Med 18: 1183–4Google Scholar
  8. 8.
    Jardin F, Brun-Ney D, Auvert B et al. (1990) Sepsis-related cardiogenic shock. Crit Care Med 18: 1055–60PubMedGoogle Scholar
  9. 9.
    Jardin F, Valtier B, Beauchet A et al. (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20: 550–4PubMedGoogle Scholar
  10. 10.
    Jafri S, Lavine S, Field B et al. (1990) Left ventricular function in sepsis. Crit Care Med 18: 709–14PubMedGoogle Scholar
  11. 11.
    Munt B, Jue J, Gin K et al. (1998) Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 26: 1829–33PubMedGoogle Scholar
  12. 12.
    Fernandes Jr C, Akamine N, Knobel E (1999). Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med 25: 1165–8PubMedGoogle Scholar
  13. 13.
    Turner A, Tsamitros M, Bellomo R (1999) Myocardial cell injury in septic shock. Crit Care Med 27: 1775–80PubMedGoogle Scholar
  14. 14.
    Ver Elst K, Spapen H, Nguyen D et al. (2000) Cardiac Troponin I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 46: 650–7Google Scholar
  15. 15.
    Kern H, Wittich R, Rohr U et al. (2001) Increased endothelial injury in septic patients with coronary artery disease. Chest 119: 874–83CrossRefPubMedGoogle Scholar
  16. 16.
    Grocott-Mason R, Shah A (1998) Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med 24: 286–95CrossRefPubMedGoogle Scholar
  17. 17.
    Brett J, Gewrlach H, Nawroth P et al. (1989) Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayer by a mechanism involving regulatory G proteins. J Exp Med 169: 1977–91CrossRefPubMedGoogle Scholar
  18. 18.
    Ogawa S, Gerlach C, Esposito C et al. (1990) Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. J Clin Invest 85: 1090–8PubMedGoogle Scholar
  19. 19.
    Ammann P, Fehr T, Minder E et al. (2001) Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27Google Scholar
  20. 20.
    Wu A (2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med 27: 959–61CrossRefPubMedGoogle Scholar
  21. 21.
    Parillo J (1989) The cardiovascular pathophysiology of sepsis. Ann Rev Med 40: 469–85Google Scholar
  22. 22.
    Lefer A (1970) Role of a myocardial depressant factor in the pathogenesis of circulatory shock. Fed Proc 29: 1836–47PubMedGoogle Scholar
  23. 23.
    Starr R, Lader A, Phillips G et al. (1995) Direct action of endotoxin on cardiac muscle. Shock 3: 380–4PubMedGoogle Scholar
  24. 24.
    Knuefermann P, Nemoto S, Baumgarten G et al. (2002) Cardiac inflammation and innate immunity in septic shock: is there a role for toll-like receptors? Chest 121: 1329–36CrossRefPubMedGoogle Scholar
  25. 25.
    Nemoto S, Vallejo J, Knuefermann P et al. (1996) Escherichia coli LPS-induced LV dysfunction: role of toll-like receptor-4 in the adult heart. Am J Physiol 282: H2316–23Google Scholar
  26. 26.
    Kumar A, Thota V, Dee L et al. (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–58CrossRefPubMedGoogle Scholar
  27. 27.
    Finkel M, Oddis C, Jacob T et al. (1992) negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–89PubMedGoogle Scholar
  28. 28.
    Kelly R, Balligand J, Smith T (1996) Nitric oxide and cardiac function. Circ Res 79: 363–80PubMedGoogle Scholar
  29. 29.
    Oral H, Dorn GW, Mann D (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in adult mammalian cardiac myocyte. J Biol Chem 272: 4836–42PubMedGoogle Scholar
  30. 30.
    Schreur K, Liu S (1997) Involvement of ceramide in inhibitory effect of IL-1beta on L-type Ca2+ current in adult rat ventricular myocytes. Am J Physiol 272: H2591–8PubMedGoogle Scholar
  31. 31.
    Kadokami T, McTiernan C, Kubota T et al. (2001) Effects of soluble TNF receptor treatment on lipopolysaccharide-induced myocardial cytokine expression. Am J Physiol 280: H2281–91Google Scholar
  32. 32.
    Haudek S, Spencer E, Bryant D et al. (1992) Overexpression of cardiac I-kB alpha prevents endotoxin-induced myocardial dysfunction. Am J Physiol 280: H962–8Google Scholar
  33. 33.
    Ramaciotti C, Sharkey A, McClellan G, Winegrad S (1992) Endothelial cells regulate cardiac contractility. Proc Natl Acad Sci 89: 471–80Google Scholar
  34. 34.
    Brutsaert D, Andries L (1992) The endocardial endothelium. Am J Physiol 263: H985–1002PubMedGoogle Scholar
  35. 35.
    Shah A (1998) Paracrine modulation of heart cell function by endothelial cells. Cardivascular Res 31: 847–67Google Scholar
  36. 36.
    Mebazaa A, Mayoux E, Maeda K et al. (1993) Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin. Am J Physiol 265: H1841–6PubMedGoogle Scholar
  37. 37.
    Mebazaa A, De Keulenaer G, Paqueron X et al. (2001) Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins and nitric oxide. Circulation 104: 3137–44PubMedGoogle Scholar
  38. 38.
    Balligand J, Ungureanu-Longrois D, Simmons W et al. (1995) Induction of NO synthase in rat cardiac microvascular endothelium cells by IL-1beta and IFN-gamma. Am J Physiol 268: H1293–1303PubMedGoogle Scholar
  39. 39.
    Ungureanu-Longrois D, Balligand J, Okada J et al. (1995) Contractile responsiveness of ventricular myocytes to isoproterenol is regulate by induction of nitric oxide synthase activity in cardiac microvascular endothelial cells in heterotypic primary culture. Circ Res 77: 486–93PubMedGoogle Scholar
  40. 40.
    Shah A, MacCarthy P (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology & Therapeutics 86: 49–86CrossRefGoogle Scholar
  41. 41.
    Kelly R, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79: 363–80PubMedGoogle Scholar
  42. 42.
    Kirstein M, Rivet-Bastide M, Hatem S et al. (1995) Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest 95: 794–802PubMedGoogle Scholar
  43. 43.
    Flesch M, Kilter H, Cremers B et al. (1997) Acute effect of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp 281: 1340–9Google Scholar
  44. 44.
    Paulus W, Vantrimpont P, Shah A (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89: 2070–8PubMedGoogle Scholar
  45. 45.
    Prendergast B, Sagach V, Shah A (1997) Basal release of nitric oxide augments the Frank-Starling response in isolated heart. Circulation 96: 1320–9PubMedGoogle Scholar
  46. 46.
    Corda S, Mebazaa A, Tavernier B et al. (1998) Paracrine regulation of cardiac myocytes in normal and septic heart. J Crit Care 13: 39–47CrossRefPubMedGoogle Scholar
  47. 47.
    Rabuel C, Renaud E, Ratajzak P et al. (2003) Les protéines cardiaques sont nitrées par le peroxynitrite puis dégradées par l’ubiquitine chez les patients septiques. Ann Fr Anesth Réanim 22: S348Google Scholar
  48. 48.
    Brady A, Poole-Wilson P, Harding S, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963–6PubMedGoogle Scholar
  49. 49.
    Tavernier B, Li J, El-Omar M et al. (2001) Cardiac contractile impairment associated with increased phophorylation of troponin I in endotoxemic rats. FASEB J 15: 294–6PubMedGoogle Scholar
  50. 50.
    Tavernier B, Mebazaa A, Mateo P et al. (2001) Phosphorylation-dependent alteration in myofilament calcium sensitivity but normal mitochondrial function in septic heart. Am J Resp Crit Care Med 163: 362–7PubMedGoogle Scholar
  51. 51.
    Grover R, Zaccardelli D, Colice G et al. (1999) An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hypochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med 27: 913–22PubMedGoogle Scholar
  52. 52.
    Khadour F, Panas D, Ferdinandy P et al. (2002) Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol 283: H1108–15Google Scholar
  53. 53.
    Ferdinandy P, Danial H, Ambrus I et al. (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87: 241–7PubMedGoogle Scholar
  54. 54.
    Oyama J, Shimokawa H, Momii H et al. (1998) Role of nitric oxide and peroxynitrite in cytokine-induced sustained myocardial dysfunction in dogs in vivo. J Clin Invest 101: 2207–14PubMedGoogle Scholar
  55. 55.
    Ishida H, Ichimori K, Hirota Y et al. (1996) Peroxynitrite-induced cardiac myocytes injury. Free Radic Biol Med 20: 343–50CrossRefPubMedGoogle Scholar
  56. 56.
    Lanone S, Mebazaa A, Heymes C et al. (2000) Muscular contractile failure in septic patients: role of the inductible nitric oxide synthase pathway. Am J Resp Crit Care Med 162: 2308–15PubMedGoogle Scholar
  57. 57.
    Rabuel C, Renaud E, Riche F et al. (2003) Cardiac proteins are nitrated and metabolised by ubiquitin pathway in septic patients. Intensive Care Med, in pressGoogle Scholar
  58. 58.
    Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovascular Res 53: 165–74CrossRefGoogle Scholar
  59. 59.
    Iqbal M, Cohen R, Marzouk K, Liu S (2002) Time course of nitric oxide, peroxynitrite, and antioxidants in the endotoxemic heart. Crit Care Med 30: 1291–6PubMedGoogle Scholar
  60. 60.
    Lew W, Yasuda S, Yuan T, Hammond HK (1996) Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J Mol Cell Cardiol 28: 1367–71CrossRefPubMedGoogle Scholar
  61. 61.
    Abi Gerges N, Tavernier B, Mebazaa A et al. (1999) Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am J Resp Crit Care Med 160: 1196–1204PubMedGoogle Scholar
  62. 62.
    Dong L, Wu L, Ji Y, Liu M (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and it underlying mechanism during the hypodynamic phase of sepsis. Shock 16: 33–9PubMedGoogle Scholar
  63. 63.
    Ziolo M, Katoh H, Bers D (2001) Expression of inducible nitric oxide synthase depresses beta-adrenergic-stimulated calcium release from the sarcoplasmic reticulum in intact ventricular myocytes. Circulation 104: 2961–6PubMedGoogle Scholar
  64. 64.
    Liu M, Wu L (1991) Reduction in the calcium-induced calcium release from canine cardiac sarcoplasmic reticulum following endotoxin administration. Biochem Biophys Res Commun 174: 1248–54PubMedGoogle Scholar
  65. 65.
    Wu L, Ji Y, Dong L, Liu M (2001) Calcium uptake by sarcoplasmic reticlum is impaired during the hypodynamic phase of sepsis in the rat heart. Shock 15: 49–55PubMedGoogle Scholar
  66. 66.
    Wu L, Tang C, Dong L, Liu M (2002) Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock 17: 389–93PubMedGoogle Scholar
  67. 67.
    Wu L, Liu M (1992) Heart sarcolemmal calcium transport in endotoxinic shock: I impairment of ATP-dependent calcium transport. Biochem Biophys Res Commun 112: 125–33Google Scholar
  68. 68.
    Kustsky P and Parker J (1990) Calcium fluxes in cardiac sarcolemma and sarcoplasmic reticulum isolated from endotoxin-shocked guinea-pigs. Circ Shock 30: 349–64Google Scholar
  69. 69.
    Tavernier B, Garrigue D, Boulle C et al. (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibers of endotoxinic-treated rabbits. Cardivascular Res 38: 472–9Google Scholar
  70. 70.
    Komukai K and Kurihara S (1997) Length-dependence of calcium-tension relationship in aequorin-injected ferret papillary muscles. Am J Physiol 273: H1068–74PubMedGoogle Scholar
  71. 71.
    Jones S, Romano F (1990) Myocardial beta adrenergic receptor coupling to adenylate cyclase during developing septic shock. Circ Shock 30: 51–61PubMedGoogle Scholar
  72. 72.
    Jones S, Kovrik M, Romano F (1986) Cardiac and splenic norepinephrine turnover during septic peritonitis. Am J Physiol 250: R892–7PubMedGoogle Scholar
  73. 73.
    Reithmann C, Gierschik P, Werdan K, Jacobs K (1991) Tumor necrosis factor-alpha upregulates Gi and G proteins and adenylate cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol 206: 53–60PubMedGoogle Scholar
  74. 74.
    Chung M, Gullick T, Rotondo R et al. (1990) Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP on rat cardiac myocytes-impairment of signal transduction. Circ Res 67: 753–63PubMedGoogle Scholar
  75. 75.
    Gullick T, Chung M, Pieper S, Lange L and Schreiner R (1989) Interleukin-1 and tumor necrosis factor inhibit cardiac myocyte ß-adrenergic responsiveness. Proc Natl Acad Sci 86: 6753–7Google Scholar
  76. 76.
    Tang C, Liu M (1996) Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol 270: R254–63PubMedGoogle Scholar
  77. 77.
    Wu L, Tang C, Liu M (1997) Hyper-and hypocardiodynamic states are associated with externalization and internalization, respectively, of alpha-adrenergic receptors in rat heart during sepsis. Shock 7: 318–22PubMedGoogle Scholar
  78. 78.
    Sulakhe P, Sandirasegrarane L, Davis J et al. (1996) Alterations in inotropy, nitric oxide and cyclic GMP synthesis, protein phosphorylation and ADP-ribosylation in the endotoxintreated rat myocardium and cardiomyocytes. Mol Cell Biochem 163/164: 305–18CrossRefGoogle Scholar
  79. 79.
    Ashorobi R, Kpohraror B (1995) Effects of calcium ions and atropine on endotoxin-induced contractility deficit in rat atrial muscle. East Afr Med J 72: 263–6PubMedGoogle Scholar
  80. 80.
    Silverman H, Penaranda R, Orens J, Lee N (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21: 31–9PubMedGoogle Scholar
  81. 81.
    Reithmann C, Hallström S, Pilz G et al. (1993) Desensitization of rat cardiomyocyte adenylyl cyclase stimulation by plasma of noradrenaline-treated patients with septic shock. Circ Shock 41: 48–59PubMedGoogle Scholar
  82. 82.
    Reithmann C, Gierschik P, Sidiropoulos D et al. (1989) Mechanism of noradrenaline-induced heterologous desensitization of adenylate cyclase stimulation in rat heart muscles cells: increase the level of inhibitory G-protein alpha-subunits. Eur J Pharmacol 172: 211–21PubMedGoogle Scholar
  83. 83.
    Lee M, Hyun D, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78: 32–41PubMedGoogle Scholar
  84. 84.
    Gao W, Atar D, Liu Y et al. (1997) Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80: 393–9PubMedGoogle Scholar
  85. 85.
    Sharma H, Maulik N, Gho B et al. (1996) Coordinated expression of heme oxygenase-1 and ubiquitin in the porcine heart subjected to ischemia and reperfusion. Mol Cell Biochem 157: 111–6CrossRefPubMedGoogle Scholar
  86. 86.
    Wu L, Tang C, Liu M (2001) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol 281: R408–16Google Scholar
  87. 87.
    Fernandes Jr C, Iervolino M et al. (1994) Interstitial myocarditis in sepsis. Am J Cardio 74: 958Google Scholar
  88. 88.
    Brealey D, Brand M, Hargreaves I et al. (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–23CrossRefPubMedGoogle Scholar
  89. 89.
    Brealey D, Rabuel C, Mebazaa A et al. (2002) iNOS expression and peroxynitrite productions is associated with mitochondrial dysfunction in skeletal muscle of patients with severe sepsis. Intensive Care Med 28: S17Google Scholar
  90. 90.
    Trumbeckaite S, Opalka J, Neuhof C et al. (2001) Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur J Biochem 268: 1422–9CrossRefPubMedGoogle Scholar
  91. 91.
    Panas D, Khadour F, Szabo C, Schulz R (1998) Proinflammatory cytokines depress cardiac efficiency by a nitric oxide-dependent mechanism. Am J Physiol 275: H1016–23PubMedGoogle Scholar
  92. 92.
    Nevière R, Fauvel H, Chopin C et al. (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in rat model of sepsis. Am J Resp Crit Care Med 163: 218–25PubMedGoogle Scholar
  93. 93.
    Fauvel H, Marchetti P, Chopin C et al. (2001) Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol 280: H1608–14Google Scholar
  94. 94.
    Fauvel H, Marchetti P, Obert G et al. (2002) Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am J Resp Crit Care Med 165: 449–55PubMedGoogle Scholar
  95. 95.
    Rabuel C, Renaud E, Brealey D et al. (2004) Human Septic myopathy: induction of cyclooxygenase, heme oxygenase and activation of the ubiquitin proteolytic pathway. Anesthesiology 101: 583–90PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2005

Authors and Affiliations

  • C. Rabuel
  • B. Tavernier
  • A. Mebazaa

There are no affiliations available

Personalised recommendations