Skip to main content

Radiation Therapy-Related Toxicity: Esophagus

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 335 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn S-J et al (2005) Dosimetric and clinical predictors for radiation-induced esophageal injury. Int J Radiat Oncol Biol Phys 61(2):335–347

    Google Scholar 

  • Al-Halabi H et al (2015) A contralateral esophagus-sparing technique to limit severe esophagitis associated with concurrent high-dose radiation and chemotherapy in patients with thoracic malignancies. Int J Radiat Oncol Biol Phys 92(4):803–810

    Google Scholar 

  • Alshawa A et al (2021) Effects of glutamine for prevention of radiation-induced esophagitis: a double-blind placebo-controlled trial. Invest New Drugs 39:1113–1122

    Google Scholar 

  • Anderson CM et al (2019) Phase IIb, randomized, double-blind trial of GC4419 versus placebo to reduce severe oral mucositis due to concurrent radiotherapy and cisplatin for head and neck cancer. J Clin Oncol 37(34):3256

    Google Scholar 

  • Antonadou D et al (2001) Randomized phase III trial of radiation treatment ± amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys 51(4):915–922

    Google Scholar 

  • Ball D et al (1995) A phase III study of accelerated radiotherapy with and without carboplatin in nonsmall cell lung cancer: an interim toxicity analysis of the first 100 patients. Int J Radiat Oncol Biol Phys 31(2):267–272

    Google Scholar 

  • Ball D et al (2019) Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol 20(4):494–503

    Google Scholar 

  • Belderbos J et al (2005) Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol 75(2):157–164

    Google Scholar 

  • Bezjak A et al (2019) Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non–small-cell lung cancer: NRG oncology/RTOG 0813 trial. J Clin Oncol 37(15):1316

    Google Scholar 

  • Boal DK, Newburger PE, Teele RL (1979) Esophagitis induced by combined radiation and adriamycin. Am J Roentgenol 132(4):567–570

    Google Scholar 

  • Bradley J et al (2005) Toxicity and outcome results of RTOG 9311: a phase I–II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non–small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61(2):318–328

    Google Scholar 

  • Bradley JD et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Google Scholar 

  • Byhardt RW et al (1998) Response, toxicity, failure patterns, and survival in five Radiation Therapy Oncology Group (RTOG) trials of sequential and/or concurrent chemotherapy and radiotherapy for locally advanced non–small-cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 42(3):469–478

    Google Scholar 

  • Chang S-C et al (2019) Oral glutamine supplements reduce concurrent chemoradiotherapy-induced esophagitis in patients with advanced non-small cell lung cancer. Medicine 98(8):e14463

    Google Scholar 

  • Chen Y et al (2008) Toxicity profile and pharmacokinetic study of a phase I low-dose schedule–dependent radiosensitizing paclitaxel chemoradiation regimen for inoperable non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 71(2):407–413

    Google Scholar 

  • Chen H et al (2019) Safety and effectiveness of stereotactic ablative radiotherapy for ultra-central lung lesions: a systematic review. J Thorac Oncol 14(8):1332–1342

    Google Scholar 

  • Choi GB et al (2005) Fluoroscopically guided balloon dilation for patients with esophageal stricture after radiation treatment. J Vasc Interv Radiol 16(12):1705–1709

    Google Scholar 

  • Chowhan NM (1990) Injurious effects of radiation on the esophagus. Am J Gastroenterol 85(2):115–120

    Google Scholar 

  • Choy H, Safran H (1995) Preliminary analysis of a phase II study of weekly paclitaxel and concurrent radiation therapy for locally advanced non-small cell lung cancer. Semin Oncol 22(4 Suppl 9):55

    Google Scholar 

  • Choy H et al (1999) Esophagitis in combined modality therapy for locally advanced non-small cell lung cancer. Semin Radiat Oncol 9(2 Suppl 1):90

    Google Scholar 

  • Chun SG et al (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non–small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 35(1):56

    Google Scholar 

  • Cox JD et al (1993) Interruptions of high-dose radiation therapy decrease longterm survival of favorable patients with unresectable nonsmall cell carcinoma of the lung: analysis of 1244 cases from 3 radiation therapy oncology group (RTOG) trials. Int J Radiat Oncol Biol Phys 27(3):493–498

    MathSciNet  Google Scholar 

  • Delgado BD, Enguix-Riego MV, de Bobadilla JC, Rivera DH, Gómez JM, Praena-Fernández JM, Del Campo ER, Gordillo MJ, Fernandez MD, Guerra JL (2019) Association of single nucleotide polymorphisms at HSPB1 rs7459185 and TGFB1 rs11466353 with radiation esophagitis in lung cancer. Radiot and Oncol 135:161–9.

    Google Scholar 

  • Dieleman EMT et al (2007) Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. Int J Radiat Oncol Biol Phys 67(3):775–780

    Google Scholar 

  • Dubray B et al (1995) Combined chemoradiation for locally advanced nonsmall cell lung cancer. J Infus Chemother 5(4):195–196

    Google Scholar 

  • Duijm M et al (2020) Predicting high-grade esophagus toxicity after treating central lung tumors with stereotactic radiation therapy using a normal tissue complication probability model. Int J Radiat Oncol Biol Phys 106(1):73–81

    Google Scholar 

  • Faivre-Finn C et al (2017) Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncol 18(8):1116–1125

    Google Scholar 

  • Fogh SE et al (2017) A randomized phase 2 trial of prophylactic manuka honey for the reduction of chemoradiation therapy–induced esophagitis during the treatment of lung cancer: results of NRG oncology RTOG 1012. Int J Radiat Oncol Biol Phys 97(4):786–796

    Google Scholar 

  • Gandara DR et al (2003) Consolidation docetaxel after concurrent chemoradiotherapy in stage IIIB non–small-cell lung cancer: Phase II Southwest Oncology Group Study S9504. J Clin Oncol 21(10):2004–2010

    Google Scholar 

  • Giuliani ME et al (2015) Correlation of dosimetric and clinical factors with the development of esophagitis and radiation pneumonitis in patients with limited-stage small-cell lung carcinoma. Clin Lung Cancer 16(3):216–220

    Google Scholar 

  • Goldstein HM et al (1975) Radiological manifestations of radiation-induced injury to the normal upper gastrointestinal tract. Radiology 117(1):135–140

    Google Scholar 

  • Grills IS et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non–small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57(3):875–890

    Google Scholar 

  • Guerra JL, Gomez D, Wei Q, Liu Z, Wang LE, Yuan X, Zhuang Y, Komaki R, Liao Z (2012) Association between single nucleotide polymorphisms of the transforming growth factor β1 gene and the risk of severe radiation esophagitis in patients with lung cancer. Radiother Oncol 105(3):299–304

    Google Scholar 

  • Kahn D et al (2005) “Anatomically-correct” dosimetric parameters may be better predictors for esophageal toxicity than are traditional CT-based metrics. Int J Radiat Oncol Biol Phys 62(3):645–651

    Google Scholar 

  • Kamran SC et al (2020) Phase I trial of an IMRT-based Contralateral Esophagus Sparing Technique (CEST) in locally advanced NSCLC and SCLC treated to 70 Gy. Int J Radiat Oncol Biol Phys 108(3):S104–S105

    Google Scholar 

  • Kim TH et al (2005) Dose-volumetric parameters of acute esophageal toxicity in patients with lung cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 62(4):995–1002

    Google Scholar 

  • Komaki R et al (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non–small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58(5):1369–1377

    Google Scholar 

  • Langer CJ et al (2001) Do elderly patients (pts) with locally advanced non-small cell lung cancer (NSCLC) benefit from combined modality therapy? A secondary analysis of RTOG 94-10. Int J Radiat Oncol Biol Phys 51(3):20–21

    Google Scholar 

  • Lepke RA, Libshitz HI (1983) Radiation-induced injury of the esophagus. Radiology 148(2):375–378

    Google Scholar 

  • Liao Z et al (2018) Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer. J Clin Oncol 36(18):1813

    Google Scholar 

  • Louie AV et al (2020) A phase III randomized trial of palliative radiation for advanced central lung tumors with intentional avoidance of the esophagus (PROACTIVE). Int J Radiat Oncol Biol Phys 108(3):S105–S106

    Google Scholar 

  • Maguire PD et al (1999) Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys 45(1):97–103

    Google Scholar 

  • McGinnis WL et al (1997) Placebo-controlled trial of sucralfate for inhibiting radiation-induced esophagitis. J Clin Oncol 15(3):1239–1243

    Google Scholar 

  • Mehmood Q et al (2016) Predicting radiation esophagitis using 18F-FDG PET during chemoradiotherapy for locally advanced non–small cell lung cancer. J Thorac Oncol 11(2):213–221

    Google Scholar 

  • Michalowski A, Hornsey S (1986) Assays of damage to the alimentary canal. Br J Cancer Suppl 7:1

    Google Scholar 

  • Movsas B et al (2005) Randomized trial of amifostine in locally advanced non–small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: Radiation Therapy Oncology Group trial 98-01. J Clin Oncol 23(10):2145–2154

    Google Scholar 

  • Nestle U et al (2020) Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. Lancet Oncol 21(4):581–592

    Google Scholar 

  • Nieder C et al (2020) Risk factors for esophagitis after hypofractionated palliative (chemo) radiotherapy for non-small cell lung cancer. Radiat Oncol 15:1–6

    Google Scholar 

  • Niedzielski JS et al (2016a) Objectively quantifying radiation esophagitis with novel computed tomography–based metrics. Int J Radiat Oncol Biol Phys 94(2):385–393

    Google Scholar 

  • Niedzielski JS et al (2016b) 18F-Fluorodeoxyglucose Positron Emission Tomography can quantify and predict esophageal injury during radiation therapy. Int J Radiat Oncol Biol Phys 96(3):670–678

    Google Scholar 

  • Palma DA, Senan S, Oberije C, Belderbos J, De Dios NR, Bradley JD, Barriger RB, Moreno-Jiménez M, Kim TH, Ramella S, Everitt S (2013) Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 87(4):690–696

    Google Scholar 

  • Patel AB et al (2004) Predictors of acute esophagitis in patients with non–small-cell lung carcinoma treated with concurrent chemotherapy and hyperfractionated radiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 60(4):1106–1112

    Google Scholar 

  • Phillips TL, Ross G (1974) Time-dose relationships in the mouse esophagus. Radiology 113(2):435–440

    Google Scholar 

  • Ramroth J, Cutter DJ, Darby SC, Higgins GS, McGale P, Partridge M, Taylor CW (2016) Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys 96(4):736–47

    Google Scholar 

  • Rodríguez N et al (2009) Predictors of acute esophagitis in lung cancer patients treated with concurrent three-dimensional conformal radiotherapy and chemotherapy. Int J Radiat Oncol Biol Phys 73(3):810–817

    Google Scholar 

  • Sarna L et al (2008) Clinically meaningful differences in patient-reported outcomes with amifostine in combination with chemoradiation for locally advanced non–small-cell lung cancer: an analysis of RTOG 9801. Int J Radiat Oncol Biol Phys 72(5):1378–1384

    Google Scholar 

  • Saunders M et al (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. Lancet 350(9072):161–165

    Google Scholar 

  • Sejpal S et al (2011) Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer 117(13):3004–3013

    Google Scholar 

  • Stickle RL et al (1999) Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase transgene. Radiat Oncol Investig 7(4):204–217

    Google Scholar 

  • Suzuki R et al (2018) Twice-daily thoracic radiotherapy for limited-stage small-cell lung cancer does not increase the incidence of acute severe esophagitis. Clin Lung Cancer 19(6):e885–e891

    Google Scholar 

  • Turrisi AT et al (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340(4):265–271

    Google Scholar 

  • Vokes EE et al (2002) Randomized phase II study of cisplatin with gemcitabine or paclitaxel or vinorelbine as induction chemotherapy followed by concomitant chemoradiotherapy for stage IIIB non–small-cell lung cancer: Cancer and Leukemia Group B study 9431. J Clin Oncol 20(20):4191–4198

    Google Scholar 

  • Wang S et al (2018) A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiother Oncol 126(3):506–510

    Google Scholar 

  • Wang Z et al (2020) Lyman–Kutcher–Burman normal tissue complication probability modeling for radiation-induced esophagitis in non-small cell lung cancer patients receiving proton radiotherapy. Radiother Oncol 146:200–204

    Google Scholar 

  • Werner-Wasik M et al (2000) Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy. Int J Radiat Oncol Biol Phys 48(3):689–696

    Google Scholar 

  • Werner-Wasik M et al (2002) Phase II: trial of twice weekly amifostine in patients with non-small cell lung cancer treated with chemoradiotherapy. Semin Radiat Oncol 12(1):34–39

    Google Scholar 

  • Werner-Wasik M et al (2010) Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys 76(3):S86–S93

    Google Scholar 

  • Werner-Wasik M et al (2011) Acute esophagitis and late lung toxicity in concurrent chemoradiotherapy trials in patients with locally advanced non–small-cell lung cancer: analysis of the Radiation Therapy Oncology Group (RTOG) database. Clin Lung Cancer 12(4):245–251

    Google Scholar 

  • Wijsman R et al (2015) Multivariable normal-tissue complication modeling of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-) radiotherapy. Radiother Oncol 117(1):49–54

    Google Scholar 

  • Wu AJ et al (2014) Dosimetric predictors of esophageal toxicity after stereotactic body radiotherapy for central lung tumors. Radiother Oncol 112(2):267–271

    Google Scholar 

  • Yau V et al (2018) Low incidence of esophageal toxicity after lung stereotactic body radiation therapy: are current esophageal dose constraints too conservative? Int J Radiat Oncol Biol Phys 101(3):574–580

    Google Scholar 

  • Yuan ST et al (2014) Timing and intensity of changes in FDG uptake with symptomatic esophagitis during radiotherapy or chemo-radiotherapy. Radiat Oncol 9(1):1–6

    Google Scholar 

  • Zhao H et al (2019) A prospective, three-arm, randomized trial of EGCG for preventing radiation-induced esophagitis in lung cancer patients receiving radiotherapy. Radiother Oncol 137:186–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith Giuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raman, S., Giuliani, M. (2023). Radiation Therapy-Related Toxicity: Esophagus. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2023_381

Download citation

  • DOI: https://doi.org/10.1007/174_2023_381

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics