Skip to main content

Estimating the Risk of Radiation-Induced Malignancy Following Radiotherapy for Benign Disease

  • Chapter
  • First Online:
Radiation Therapy of Benign Diseases

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 162 Accesses

Abstract

Throughout this textbook there are descriptions of a wide range of diseases treated typically with moderate-dose radiotherapy (MDRT; conventionally fractionated dose range 5–40 Gy, mean ~20 Gy). These regimens may provide clinical benefit in many of these situations with, for the most part, minimal acute side effects (Taylor et al. 2015). The most important deterrent against the use of MDRT is often the acknowledged, if normally very small, risk of a radiation-induced cancer (RIC) many years after treatment (McKeown et al. 2015; Mazonakis and Damilakis 2017). However, the number of patients required to estimate the risk of an expected small/very small increase in RICs, occurring many years after exposure to MDRT to a confined radiation field, is large, yet (with a few exceptions) the numbers treated for these specific indications are small. Consequently, there have been very few directly relevant trials to identify the risk of a RIC following MDRT. Indeed, due to the long latency time (LT) required, most of the studies discussed in this chapter relate to patients treated >30 years ago when RT treatment protocols were less sophisticated. The use of modern technology also modifies the extent and location of normal tissue exposure to ionizing radiation during RT (Lee et al. 2014; Liu et al. 2016). For example, the use of intensity-modulated RT (IMRT) to improve conformality may expose additional healthy tissue to low doses of radiation because of the increased number of angles used. This adds another layer of complexity to the assessment of RIC risk for current treatment approaches when comparing to data from historical cohorts (Mazonakis and Damilakis 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allodji RS, Hawkins MM, Bright CJ, Fidler-Benaoudia MM, Winter DL, Alessi D, Fresneau B, Journy N, Morsellino V, Bárdi E, Bautz A, Byrne J, Feijen ELA, Teepen JC, Vu-Bezin G, Rubino C, Garwicz S, Grabow D, Gudmundsdottir T, Guha J, Hau EM, Jankovic M, Kaatsch P, Kaiser M, Linge H, Muraca M, Llanas D, Veres C, Øfstaas H, Diallo I, Mansouri I, Ronckers CM, Skinner R, Terenziani M, Wesenberg F, Wiebe T, Sacerdote C, Jakab Z, Haupt R, Lähteenmäki P, Zaletel LZ, Kuehni CE, Winther JF, Michel G, Kremer LCM, Hjorth L, Haddy N, de Vathaire F, Reulen RC (2019) Risk of subsequent primary leukaemias among 69,460 five-year survivors of childhood cancer diagnosed from 1940 to 2008 in Europe: a cohort study within PanCareSurFup. Eur J Cancer 117:71–83

    Google Scholar 

  • Antunes L, Bento MJ, Sobrinho-Simões M, Soares P, Boaventura P (2020) Cancer incidence after childhood irradiation for tinea capitis in a Portuguese cohort. Br J Radiol 93(1105):20180677

    Google Scholar 

  • Armstrong GT, Liu W, Leisenring W, Yasui Y, Hammond S, Bhatia S et al (2011) Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 29:3056–3064

    Google Scholar 

  • Azizova TV, Bannikova MV, Grigoryeva ES, Rybkina VL (2021) Risk of skin cancer by histological type in a cohort of workers chronically exposed to ionizing radiation. Radiat Environ Biophys 60(1):9–22

    Google Scholar 

  • Baldi I, Engelhardt J, Bonnet C, Bauchet L, Berteaud E, Grüber A, Loiseau H (2018) Epidemiology of meningiomas. Neurochirurgie 64(1):5–14

    Google Scholar 

  • Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM, Bernstein JL, Evans JD, Gerber NK, Kerns SL, Keen J, Litton JK, Reiner AS, Riaz N, Rosenstein BS, Sawakuchi GO, Shaitelman SF, Powell SN, Woodward WA (2019) The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. Int J Radiat Oncol Biol Phys 105(4):698–712

    Google Scholar 

  • Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD et al (2011) Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12:353–360

    Google Scholar 

  • Berrington de Gonzalez A, Kutsenko A, Rajaraman P (2012) Sarcoma risk after radiation exposure. Clin Sarcoma Res 2(1):18

    Google Scholar 

  • Berrington de Gonzalez A, Gilbert E, Curtis R, Inskip P, Kleinerman R, Morton L, Rajaraman P, Little MP (2013) Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys 86(2):224–233

    Google Scholar 

  • Berrington de Gonzalez A, Salotti JA, McHugh K, Little MP, Harbron RW, Lee C, Ntowe E, Braganza MZ, Parker L, Rajaraman P, Stiller C, Stewart DR, Craft AW, Pearce MS (2016) Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer 114(4):388–394

    Google Scholar 

  • Bhatia S, Chen Y, Wong FL, Hageman L, Smith K, Korf B, Cannon A, Leidy DJ, Paz A, Andress JE, Friedman GK, Metrock K, Neglia JP, Arnold M, Turcotte LM, de Blank P, Leisenring W, Armstrong GT, Robison LL, Clapp DW, Shannon K, Nakamura JL, Fisher MJ (2019) Subsequent neoplasms after a primary tumor in individuals with neurofibromatosis type 1. J Clin Oncol 37(32):3050–3058

    Google Scholar 

  • Bispo JAB, Pinheiro PS, Kobetz EK (2020) Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb Perspect Med 10(6):a034819

    Google Scholar 

  • Boaventura P, Oliveira R, Pereira D, Soares P, Teixeira-Gomes J (2012) Head and neck basal cell carcinoma prevalence in individuals submitted to childhood X-ray epilation for tinea capitis treatment. Eur J Dermatol 22:225–230

    Google Scholar 

  • Bowers DC, Nathan PC, Constine L, Woodman C, Bhatia S, Keller K et al (2013) Subsequent neoplasms of the CNS among survivors of childhood cancer: a systematic review. Lancet Oncol 14:e321–e328

    Google Scholar 

  • Braganza MZ, Kitahara CM, Berrington de González A, Inskip PD, Johnson KJ, Rajaraman P (2012) Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol 14(11):1316–1324. https://doi.org/10.1093/neuonc/nos208. Epub 2012 Sep 5

    Article  Google Scholar 

  • Braunstein S, Nakamura JL (2013) Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol 3:73. https://doi.org/10.3389/fonc.2013.00073

    Article  Google Scholar 

  • Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88:398–406

    Google Scholar 

  • Brown WM, Doll R (1965) Mortality from cancer and other causes after radiotherapy for ankylosing spondylitis. Br Med J 2(5474):1327–1332

    Google Scholar 

  • Carr ZA, Kleinerman RA, Stovall M, Weinstock RM, Griem ML, Land CE (2002) Malignant neoplasms after radiation therapy for peptic ulcer. Radiat Res 157:668–677

    Google Scholar 

  • Chang LA, Miller DL, Lee C, Melo DR, Villoing D, Drozdovitch V, Thierry-Chef I, Winters SJ, Labrake M, Myers CF, Lim H, Kitahara CM, Linet MS, Simon SL (2017) Thyroid radiation dose to patients from diagnostic radiology procedures over eight decades: 1930–2010. Health Phys 113(6):458–473

    Google Scholar 

  • Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99:1634–1643

    Google Scholar 

  • Chowdhary A, Spence AM, Sales L, Rostomily RC, Rockhill JK, Silbergeld DL (2012) Radiation associated tumors following therapeutic cranial radiation. Surg Neurol Int 3:48

    Google Scholar 

  • Darby WC, Doll R, Gill SK, Smith PG (1987) Long term mortality after a single treatment course with X-rays in patients treated for ankylosing spondylitis. Br J Cancer 55:179–190

    Google Scholar 

  • Davis FG, Boice JD Jr, Hrubec Z, Monson RR (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49:6130–6136

    Google Scholar 

  • De Bruin ML, Sparidans J, van’t Veer MB, Noordijk EM, Louwman MW, Zijlstra JM, van den Berg H, Russell NS, Broeks A, Baaijens MH, Aleman BM, van Leeuwen FE (2009) Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol 27(26):4239–4246

    Google Scholar 

  • Donin N, Filson C, Drakaki A, Tan HJ, Castillo A, Kwan L, Litwin M, Chamie K (2016) Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. Cancer 122(19):3075–3086

    Google Scholar 

  • Doody MM, Freedman DM, Alexander BH, Hauptmann M, Miller JS, Rao RS, Mabuchi K, Ron E, Sigurdson AJ, Linet MS (2006) Breast cancer incidence in U.S. radiologic technologists. Cancer 106(12):2707–2715

    Google Scholar 

  • Drobin K, Marczyk M, Halle M, Danielsson D, Papiez A, Sangsuwan T, Bendes A, Hong MG, Qundos U, Harms-Ringdahl M, Wersäll P, Polanska J, Schwenk JM, Haghdoost S (2020) Molecular profiling for predictors of radiosensitivity in patients with breast or head-and-neck cancer. Cancers (Basel) 12(3):753

    Google Scholar 

  • Eidemüller M, Holmberg E, Jacob P, Lundell M, Karlsson P (2015) Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort after reanalyzed dosimetry. Mutat Res 775:1–9. https://doi.org/10.1016/j.mrfmmm.2015.03.002

    Article  Google Scholar 

  • Eidemüller M, Holmberg E, Lundell M, Karlsson P (2021) Evidence for increased susceptibility to breast cancer from exposure to ionizing radiation due to a familial history of breast cancer: results from the Swedish hemangioma cohort. Am J Epidemiol 190(1):76–84

    Google Scholar 

  • Furukawa K, Preston DL, Lönn S, Funamoto S, Yonehara S, Matsuo T (2010) Radiation and smoking effects on lung cancer incidence among atomic bomb survivors. Radiat Res 174:72–82

    Google Scholar 

  • Gilbert ES, Stovall M, Gospodarowicz M, Van Leeuwen FE, Andersson M, Glimelius B et al (2003) Lung cancer after treatment for Hodgkin’s disease: focus on radiation effects. Radiat Res 159:161–173

    Google Scholar 

  • Giulino-Roth L, Pei Q, Buxton A, Bush R, Wu Y, Wolden SL, Constine LS, Kelly KM, Schwartz CL, Friedman DL (2021) Subsequent malignant neoplasms among children with Hodgkin lymphoma: a report from the Children’s Oncology Group. Blood 137(11):1449–1456

    Google Scholar 

  • Godlewski B, Drummond KJ, Kaye AH (2012) Radiation induced meningiomas after high dose cranial irradiation. J Clin Neurosci 19:1627–1635

    Google Scholar 

  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, Preston DL, Mabuchi K, Ozasa K (2017) Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res 187(5):513–537

    Google Scholar 

  • Gregersen PA, Olsen MH, Urbak SF, Funding M, Dalton SO, Overgaard J, Alsner J (2020) Incidence and mortality of second primary cancers in Danish patients with retinoblastoma, 1943–2013. JAMA Netw Open 3(10):e2022126. https://doi.org/10.1001/jamanetworkopen.2020.22126

    Article  Google Scholar 

  • Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65:1–7

    Google Scholar 

  • Hall E, Giaccia A (2018) Radiobiology for the radiologist, 8th edn. Wolters Kluwer Health, New York

    Google Scholar 

  • Han MA, Kim JH (2018) Diagnostic X-ray exposure and thyroid cancer risk: systematic review and meta-analysis. Thyroid 28(2):220–228

    Google Scholar 

  • Hasegawa T, Kida Y, Kato T, Iizuka H, Kuramitsu S, Yamamoto T (2013) Long-term safety and efficacy of stereotactic radiosurgery for vestibular schwannomas: evaluation of 440 patients more than 10 years after treatment with Gamma Knife surgery. J Neurosurg 118:557–565

    Google Scholar 

  • Hassanpour SE, Kalantar-Hormozi A, Motamed S, Moosavizadeh SM, Shahverdiani R (2006) Basal cell carcinoma of scalp in patients with history of childhood therapeutic radiation: a retrospective study and comparison to nonirradiated patients. Ann Plast Surg 57:509–512

    Google Scholar 

  • Henderson TO, Rajaraman P, Stovall M, Constine LS, Olive A, Smith SA et al (2012) Risk factors associated with secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. Int J Radiat Oncol Biol Phys 84:224–230

    Google Scholar 

  • Hodgson DC, Koh ES, Tran TH, Heydarian M, Tsang R, Pintilie M et al (2007) Individualized estimates of second cancer risks after contemporary radiation therapy for Hodgkin lymphoma. Cancer 110:2576–2586

    Google Scholar 

  • Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K et al (2013) The incidence of leukaemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res 179:361–382

    Google Scholar 

  • ICRP (1991a) 1990 recommendations of the International Commission on Radiological Protection. ICRP publication 60. Ann ICRP 21(1–3)

    Google Scholar 

  • ICRP (1991b) The biological basis for dose limitation in the skin. A report of a Task Group of Committee 1 of the International Commission on Radiological Protection. Ann ICRP 22(2):1–104

    Google Scholar 

  • ICRP (2015) Stem cell biology with respect to carcinogenesis aspects of radiological protection. ICRP publication 131. Ann ICRP 44(3/4)

    Google Scholar 

  • Inskip PD, Kleinerman RA, Stovall M, Cookfair DL, Hadjimichael O, Moloney WC et al (1993) Leukaemia, lymphoma, and multiple myeloma after pelvic radiotherapy for benign disease. Radiat Res 135:108–124

    Google Scholar 

  • Jansen JT, Broerse JJ, Zoetelief J, Klein C, Seegenschmiedt HM (2005) Estimation of the carcinogenic risk of radiotherapy of benign diseases from shoulder to heel. Radiother Oncol 76:270–277

    Google Scholar 

  • Joo MW, Kang YK, Ogura K, Iwata S, Kim JH, Jeong WJ, Niu X, Chinder PS, Kim HS, Seo SW, Chung YG (2018) Post-radiation sarcoma: a study by the Eastern Asian Musculoskeletal Oncology Group. PLoS One 13(10):e0204927. https://doi.org/10.1371/journal.pone.0204927

    Article  Google Scholar 

  • Kamran SC, Berrington de Gonzalez A, Ng A, Haas-Kogan D, Viswanathan AN (2016) Therapeutic radiation and the potential risk of second malignancies. Cancer 122(12):1809–1821. https://doi.org/10.1002/cncr.29841

    Article  Google Scholar 

  • Karagas MR, McDonald JA, Greenberg ER, Stukel TA, Weiss JE, Baron JA et al (1996) Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. For The Skin Cancer Prevention Study Group. J Natl Cancer Inst 88:1848–1853

    Google Scholar 

  • Kim JH, Chu FC, Woodard HQ, Melamed MR, Huvos A, Cantin J (1978) Radiation-induced soft-tissue and bone sarcoma. Radiology 129:501–508

    Google Scholar 

  • Kleinerman RA, Tucker MA, Sigel BS, Abramson DH, Seddon JM, Morton LM (2019) Patterns of cause-specific mortality among 2053 survivors of retinoblastoma, 1914–2016. J Natl Cancer Inst 111(9):961–969. https://doi.org/10.1093/jnci/djy227

    Article  Google Scholar 

  • Kumar S (2012) Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health 9:4744–4759

    Google Scholar 

  • Kutanzi KR, Lumen A, Koturbash I, Miousse IR (2016) Pediatric exposures to ionizing radiation: carcinogenic considerations. Int J Environ Res Public Health 13(11):1057. https://doi.org/10.3390/ijerph13111057

    Article  Google Scholar 

  • Lavergne V, Sabnis A, Tupule A, Davidson PR, Kline C, Matthay K, Nicolaides T, Goldsby R, Braunstein S, Fogh SE, Sneed PK, Menzel P, Nakamura A, DuBois SG, Haas-Kogan DA, Nakamura JL (2020) Germline MUTYH mutation in a pediatric cancer survivor developing a secondary malignancy. J Pediatr Hematol Oncol 42(7):e647–e654. https://doi.org/10.1097/MPH.0000000000001668

    Article  Google Scholar 

  • Lee B, Lee S, Sung J, Yoon M (2014) Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot 34(2):325–331. https://doi.org/10.1088/0952-4746/34/2/325

    Article  Google Scholar 

  • Lee WJ, Choi Y, Ko S, Cha ES, Kim J, Kim YM, Kong KA, Seo S, Bang YJ, Ha YW (2018) Projected lifetime cancer risks from occupational radiation exposure among diagnostic medical radiation workers in South Korea. BMC Cancer 18(1):1206

    Google Scholar 

  • Li C, Athar M (2016) Ionizing radiation exposure and basal cell carcinoma pathogenesis. Radiat Res 185(3):217–228. https://doi.org/10.1667/RR4284.S1. Epub 2016 Mar 1

    Article  Google Scholar 

  • Lindelöf B, Eklund G (1986) Incidence of malignant skin tumours in 14,140 patients after grenz-ray treatment for benign skin disorders. Arch Dermatol 122:1391–1395

    Google Scholar 

  • Little MP, Weiss HA, Boice JD Jr, Darby SC, Day NE, Muirhead CR (1999) Risks of leukemia in Japanese atomic bomb survivors, in women treated for cervical cancer, and in patients treated for ankylosing spondylitis. Radiat Res 152:280–292

    Google Scholar 

  • Little MP, Stovall M, Smith SA, Kleinerman RA (2013) A reanalysis of curvature in the dose response for cancer and modifications by age at exposure following radiation therapy for benign disease. Int J Radiat Oncol Biol Phys 85:451–459

    Google Scholar 

  • Little MP, Wakeford R, Borrego D, French B, Zablotska LB, Adams MJ, Allodji R, de Vathaire F, Lee C, Brenner AV, Miller JS, Campbell D, Pearce MS, Doody MM, Holmberg E, Lundell M, Sadetzki S, Linet MS, Berrington de González A (2018) Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematol 5(8):e346–e358. https://doi.org/10.1016/S2352-3026(18)30092-9. Epub 2018 Jul 17

    Article  Google Scholar 

  • Liu J, Ng D, Lee J, Stalley P, Hong A (2016) Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy. Radiat Oncol 11:34. https://doi.org/10.1186/s13014-016-0611-0

    Article  Google Scholar 

  • Lou J, Jiang L, Dai X, Wang H, Yang J, Guo L, Fang M, Wang S (2021) Radiation-induced sarcoma of the head and neck following radiotherapy for nasopharyngeal carcinoma: a single institutional experience and literature review. Front Oncol 10:526360. https://doi.org/10.3389/fonc.2020.526360

    Article  Google Scholar 

  • Lundell M, Mattsson A, Hakulinen T, Holm LE (1996) Breast cancer after radiotherapy for skin hemangioma in infancy. Radiat Res 145:225–230

    Google Scholar 

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360. https://doi.org/10.1136/bmj.f2360

    Article  Google Scholar 

  • Mattsson A, Rudén BI, Palmgren J, Rutqvist LE (1995) Dose- and time- response for breast cancer risk after radiation therapy for benign breast disease. Br J Cancer 72:1054–1061

    Google Scholar 

  • Mazonakis M, Damilakis J (2017) Cancer risk after radiotherapy for benign diseases. Phys Med 42:285–291. https://doi.org/10.1016/j.ejmp.2017.01.014. Epub 2017 Feb 8

    Article  Google Scholar 

  • Mazonakis M, Tzedakis A, Lyraraki E, Damilakis J (2016) Radiation dose and cancer risk to out-of-field and partially in-field organs from radiotherapy for symptomatic vertebral hemangiomas. Med Phys 43(4):1841. https://doi.org/10.1118/1.4944422

    Article  Google Scholar 

  • McKeown SR, Hatfield P, Prestwich RJ, Shaffer RE, Taylor RE (2015) Radiotherapy for benign disease; assessing the risk of radiation-induced cancer following exposure to intermediate dose radiation. Br J Radiol 88(1056):20150405. https://doi.org/10.1259/bjr.20150405. Epub 2015 Oct 14

    Article  Google Scholar 

  • McMahon SJ, Prise KM (2019) Mechanistic modelling of radiation responses. Cancers (Basel) 11(2):205. https://doi.org/10.3390/cancers11020205

    Article  Google Scholar 

  • Memon A, Rogers I, Paudyal P, Sundin J (2019) Dental X-rays and the risk of thyroid cancer and meningioma: a systematic review and meta-analysis of current epidemiological evidence. Thyroid 29(11):1572–1593. https://doi.org/10.1089/thy.2019.0105. Epub 2019 Oct 14

    Article  Google Scholar 

  • Moskowitz CS, Chou JF, Wolden SL, Bernstein JL, Malhotra J, Novetsky Friedman D, Mubdi NZ, Leisenring WM, Stovall M, Hammond S, Smith SA, Henderson TO, Boice JD, Hudson MM, Diller LR, Bhatia S, Kenney LB, Neglia JP, Begg CB, Robison LL, Oeffinger KC (2014) Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol 32(21):2217–2223. https://doi.org/10.1200/JCO.2013.54.4601. Epub 2014 Apr 21

    Article  Google Scholar 

  • Moskowitz CS, Chou JF, Neglia JP, Partridge AH, Howell RM, Diller LR, Novetsky Friedman D, Barnea D, Morton LM, Turcotte LM, Arnold MA, Leisenring WM, Armstrong GT, Robison LL, Oeffinger KC, Henderson TO (2019) Mortality after breast cancer among survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 37(24):2120–2130. https://doi.org/10.1200/JCO.18.02219. Epub 2019 Jul 1

    Article  Google Scholar 

  • Mulder RL, Hudson MM, Bhatia S, Landier W, Levitt G, Constine LS, Wallace WH, van Leeuwen FE, Ronckers CM, Henderson TO, Moskowitz CS, Friedman DN, Ng AK, Jenkinson HC, Demoor-Goldschmidt C, Skinner R, Kremer LCM, Oeffinger KC (2020) Updated breast cancer surveillance recommendations for female survivors of childhood, adolescent, and young adult cancer from the International Guideline Harmonization Group. J Clin Oncol 38(35):4194–4207. https://doi.org/10.1200/JCO.20.00562. Epub 2020 Sep 29

    Article  Google Scholar 

  • Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 98:1528–1537

    Google Scholar 

  • Nguyen TH, Makena MR, Yavvari S, Kaur M, Pham T, Urias E, Panapitiya N, Al-Rahawan MM (2020) Sarcoma as second cancer in a childhood cancer survivor: case report, large population analysis and literature review. Medicina (Kaunas) 56(5):224. https://doi.org/10.3390/medicina56050224

    Article  Google Scholar 

  • Opstal-van Winden AWJ, de Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, Janus CPM, Krol ADG, van der Baan FH, De Bruin ML, van Eggermond AM, Dennis J, Anton-Culver H, Haiman CA, Sawyer EJ, Cox A, Devilee P, Hooning MJ, Peto J, Couch FJ, Pharoah P, Orr N, Easton DF, Aleman BMP, Strong LC, Bhatia S, Cooke R, Robison LL, Swerdlow AJ, van Leeuwen FE (2019) Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood 133(10):1130–1139. https://doi.org/10.1182/blood-2018-07-862607. Epub 2018 Dec 20

    Article  Google Scholar 

  • Ostrom QT, Adel Fahmideh M, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML (2019) Risk factors for childhood and adult primary brain tumors. Neuro Oncol 21(11):1357–1375. https://doi.org/10.1093/neuonc/noz123

    Article  Google Scholar 

  • Ozasa K, Cullings HM, Ohishi W, Hida A, Grant EJ (2019) Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. Int J Radiat Biol 95(7):879–891. https://doi.org/10.1080/09553002.2019.1569778. Epub 2019 Feb 1

    Article  Google Scholar 

  • Pappo AS, Armstrong GT, Liu W, Srivastava DK, McDonald A, Leisenring WM et al (2013) Melanoma as a subsequent neoplasm in adult survivors of childhood cancer: a report from the childhood cancer survivor study. Pediatr Blood Cancer 60:461–466

    Google Scholar 

  • Paulino AC, Ahmed IM, Mai WY, Teh BS (2009) The influence of pretreatment characteristics and radiotherapy parameters on time interval to development of radiation-associated meningioma. Int J Radiat Oncol Biol Phys 75:1408–1414

    Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505. https://doi.org/10.1016/S0140-6736(12)60815-0. Epub 2012 Jun 7

    Article  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies on mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160:381–407

    Google Scholar 

  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    Google Scholar 

  • Preston DL, Cullings H, Suyama A, Funamoto S, Nishi N, Soda M et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436

    Google Scholar 

  • Preston DL, Kitahara CM, Freedman DM, Sigurdson AJ, Simon SL, Little MP, Cahoon EK, Rajaraman P, Miller JS, Alexander BH, Doody MM, Linet MS (2016) Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. Br J Cancer 115(9):1105–1112. https://doi.org/10.1038/bjc.2016.292. Epub 2016 Sep 13

    Article  Google Scholar 

  • Radivoyevitch T, Dean RM, Shaw BE, Brazauskas R, Tecca HR, Molenaar RJ et al (2018) Risk of acute myeloid leukemia and myelodysplastic syndrome after autotransplants for lymphomas and plasma cell myeloma. Leuk Res 74:130–136. https://doi.org/10.1016/j.leukres.2018.07.016. Epub 2018 Jul 19

    Article  Google Scholar 

  • Rajaraman P, Doody MM, Yu CL, Preston DL, Miller JS, Sigurdson AJ, Freedman DM, Alexander BH, Little MP, Miller DL, Linet MS (2016) Cancer risks in U.S. radiologic technologists working with fluoroscopically guided interventional procedures, 1994–2008. AJR Am J Roentgenol 206(5):1101–1108. https://doi.org/10.2214/AJR.15.15265. Epub 2016 Mar 21; quiz 1109

    Article  Google Scholar 

  • Rivkind N, Stepanenko V, Belukha I, Guenthoer J, Kopecky KJ, Kulikov S, Kurnosova I, Onstad L, Porter P, Shklovskiy-Kordi N, Troshin V, Voillequé P, Davis S (2020) Female breast cancer risk in Bryansk Oblast, Russia, following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Int J Epidemiol 49(2):448–456. https://doi.org/10.1093/ije/dyz214

    Article  Google Scholar 

  • Ron E, Modan B, Boice JD Jr, Alfandary E, Stovall M, Chetrit A et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    Google Scholar 

  • Ron E, Modan B, Preston D, Alfandary E, Stovall M, Boice JD Jr (1991) Radiation-induced skin carcinomas of the head and neck. Radiat Res 125:318–325

    Google Scholar 

  • Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM et al (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    Google Scholar 

  • Sadetzki S, Chetrit A, Lubina A, Stovall M, Novikov I (2006) Risk of thyroid cancer after childhood exposure to ionizing radiation for tinea capitis. J Clin Endocrinol Metab 91:4798–4804

    Google Scholar 

  • Sakata R, Kleinerman RA, Mabuchi K, Stovall M, Smith SA, Weathers R et al (2012) Cancer mortality following radiotherapy for benign gynecologic disorders. Radiat Res 178:266–279

    Google Scholar 

  • Schaapveld M, Aleman BM, van Eggermond AM, Janus CP, Krol AD, van der Maazen RW, Roesink J, Raemaekers JM, de Boer JP, Zijlstra JM, van Imhoff GW, Petersen EJ, Poortmans PM, Beijert M, Lybeert ML, Mulder I, Visser O, Louwman MW, Krul IM, Lugtenburg PJ, van Leeuwen FE (2015) Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med 373(26):2499–2511. https://doi.org/10.1056/NEJMoa1505949

    Article  Google Scholar 

  • Schwartz B, Benadjaoud MA, Cléro E, Haddy N, El-Fayech C, Guibout C et al (2014) Risk of second bone sarcoma following childhood cancer: role of radiation therapy treatment. Radiat Environ Biophys 53:381–390

    Google Scholar 

  • Shao YH, Tsai K, Kim S, Wu YJ, Demissie K (2020) Exposure to tomographic scans and cancer risks. JNCI Cancer Spectr 4(1). https://doi.org/10.1093/jncics/pkz072

  • Sherborne AL et al (2017) Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors. Clin Cancer Res 23:1852–1861. https://doi.org/10.1158/1078-0432.CCR-16-0610

    Article  Google Scholar 

  • Sherry AD, Bingham B, Kim E, Monsour M, Luo G, Attia A, Chambless LB, Cmelak AJ (2020) Secondary malignancy following stereotactic radiosurgery for benign neurologic disease: a cohort study and review of the literature. J Radiosurg SBRT 6(4):287–294

    Google Scholar 

  • Sheth GR, Cranmer LD, Smith BD, Grasso-Lebeau L, Lang JE (2012) Radiation-induced sarcoma of the breast: a systematic review. Oncologist 17(3):405–418. https://doi.org/10.1634/theoncologist.2011-0282. Epub 2012 Feb 14

    Article  Google Scholar 

  • Shore RE, Albert RE, Reed M, Harley N, Pasternack BS (1984) Skin cancer incidence among children irradiated for ringworm of the scalp. Radiat Res 100:192–204

    Google Scholar 

  • Shore RE, Hildreth N, Woodard E, Dvoretsky P, Hempelmann L, Pasternack B (1986) Breast cancer among women given X-ray therapy for acute post-partum mastitis. J Natl Cancer Inst 77:689–696

    Google Scholar 

  • Shore RE, Moseson M, Xue X, Tse Y, Harley N, Pasternack BS (2002) Skin cancer after X-ray treatment for scalp ringworm. Radiat Res 157:410–418

    Google Scholar 

  • Smoll NR, Brady Z, Scurrah K, Mathews JD (2016) Exposure to ionizing radiation and brain cancer incidence: The Life Span Study cohort. Cancer Epidemiol 42:60–65. https://doi.org/10.1016/j.canep.2016.03.006. Epub 2016 Mar 31

    Article  Google Scholar 

  • Snow A, Ring A, Struycken L, Mack W, Koç M, Lang JE (2021) Incidence of radiation induced sarcoma attributable to radiotherapy in adults: a retrospective cohort study in the SEER cancer registries across 17 primary tumor sites. Cancer Epidemiol 70:101857. https://doi.org/10.1016/j.canep.2020.101857. Epub 2020 Nov 26

    Article  Google Scholar 

  • Sugiyama H, Misumi M, Kishikawa M, Iseki M, Yonehara S, Hayashi T, Soda M, Tokuoka S, Shimizu Y, Sakata R, Grant EJ, Kasagi F, Mabuchi K, Suyama A, Ozasa K (2014) Skin cancer incidence among atomic bomb survivors from 1958 to 1996. Radiat Res 181(5):531–539. https://doi.org/10.1667/RR13494.1. Epub 2014 Apr 22

    Article  Google Scholar 

  • Swerdlow AJ, Cooke R, Bates A, Cunningham D, Falk SJ, Gilson D, Hancock BW, Harris SJ, Horwich A, Hoskin PJ, Linch DC, Lister TA, Lucraft HH, Radford JA, Stevens AM, Syndikus I, Williams MV (2012) Breast cancer risk after supradiaphragmatic radiotherapy for Hodgkin’s lymphoma in England and Wales: a National Cohort Study. J Clin Oncol 30(22):2745–2752. https://doi.org/10.1200/JCO.2011.38.8835. Epub 2012 Jun 25

    Article  Google Scholar 

  • Taylor R, Hatfield P, McKeown S, Prestwich R, Shaffer R (2015) A review of the use of radiotherapy for the treatment of benign clinical conditions and benign tumours. The Royal College of Radiologists, London. ISBN: 978-1-905034-66-6

    Google Scholar 

  • Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94:182–192

    Google Scholar 

  • Travis LB, Hill DA, Dores GM, Gospodarowicz M, van Leeuwen FE, Holowaty E et al (2003) Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290:465–475

    Google Scholar 

  • Trott KR, Kamprad F (2006) Estimation of cancer risks from radiotherapy of benign diseases. Strahlenther Onkol 182:431–436

    Google Scholar 

  • Turcotte LM, Neglia JP, Reulen RC, Ronckers CM, van Leeuwen FE, Morton LM, Hodgson DC, Yasui Y, Oeffinger KC, Henderson TO (2018) Risk, risk factors, and surveillance of subsequent malignant neoplasms in survivors of childhood cancer: a review. J Clin Oncol 36(21):2145–2152. https://doi.org/10.1200/JCO.2017.76.7764. Epub 2018 Jun 6

    Article  Google Scholar 

  • UNSCEAR (2013) Sources, effects and risks of ionizing radiation. Volume II: Scientific Annex B: Effects of radiation exposure of children

    Google Scholar 

  • van Leeuwen FE, Klokman WJ, Stovall M, Dahler EC, van’t Veer MB, Noordijk EM et al (2003) Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst 95:971–980

    Google Scholar 

  • Veiga LH, Lubin JH, Anderson H, de Vathaire F, Tucker M, Bhatti P et al (2012) A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiat Res 178:365–376

    Google Scholar 

  • Wang JX, Zhang LA, Li BX, Zhao YC, Wang ZQ, Zhang JY et al (2002) Cancer incidence and risk estimation among medical x-ray workers in China, 1950–1995. Health Phys 82:455–466

    Google Scholar 

  • Watt TC, Inskip PD, Stratton K, Smith SA, Kry SF, Sigurdson AJ, Stovall M, Leisenring W, Robison LL, Mertens AC (2012) Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 104(16):1240–1250. https://doi.org/10.1093/jnci/djs298. Epub 2012 Jul 25

    Article  Google Scholar 

  • Wolf A, Naylor K, Tam M, Habibi A, Novotny J, Liščák R, Martinez-Moreno N, Martinez-Alvarez R, Sisterson N, Golfinos JG, Silverman J, Kano H, Sheehan J, Lunsford LD, Kondziolka D (2019) Risk of radiation-associated intracranial malignancy after stereotactic radiosurgery: a retrospective, multicentre, cohort study. Lancet Oncol 20(1):159–164

    Google Scholar 

  • Xhumari A, Rroji A, Enesi E, Bushati T, Sallabanda Diaz K, Petrela M (2015) Glioblastoma after AVM radiosurgery. Case report and review of the literature. Acta Neurochir 157(5):889–895. https://doi.org/10.1007/s00701-015-2377-9. Epub 2015 Mar 7

    Article  Google Scholar 

  • Yeh JM, Lowry KP, Schechter CB, Diller LR, Alagoz O, Armstrong GT, Hampton JM, Leisenring W, Liu Q, Mandelblatt JS, Miglioretti DL, Moskowitz CS, Oeffinger KC, Trentham-Dietz A, Stout NK (2020) Clinical benefits, harms, and cost-effectiveness of breast cancer screening for survivors of childhood cancer treated with chest radiation: a comparative modeling study. Ann Intern Med 173(5):331–341. https://doi.org/10.7326/M19-3481. Epub 2020 Jul 7

    Article  Google Scholar 

  • Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, Wilkinson MR, Vadodaria B, Chen X, McGee RB, Hines-Dowell S, Nuccio R, Quinn E, Shurtleff SA, Rusch M, Patel A, Becksfort JB, Wang S, Weaver MS, Ding L, Mardis ER, Wilson RK, Gajjar A, Ellison DW, Pappo AS, Pui CH, Nichols KE, Downing JR (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373(24):2336–2346. https://doi.org/10.1056/NEJMoa1508054. Epub 2015 Nov 18

    Article  Google Scholar 

  • Zhang AY, Judson I, Benson C, Wunder JS, Ray-Coquard I, Grimer RJ, Quek R, Wong E, Miah AB, Ferguson PC, Dufresne A, Teh JYH, Stockler M, Tattersall MHN (2017) Chemotherapy with radiotherapy influences time-to-development of radiation-induced sarcomas: a multicenter study. Br J Cancer 117(3):326–331. https://doi.org/10.1038/bjc.2017.198. Epub 2017 Jun 27. Erratum in: Br J Cancer. 2018;118(12):1682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean L. Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakamura, J.L., Braunstein, S.E., McKeown, S.R. (2022). Estimating the Risk of Radiation-Induced Malignancy Following Radiotherapy for Benign Disease. In: Roberge, D., Donaldson, S.S. (eds) Radiation Therapy of Benign Diseases. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_349

Download citation

  • DOI: https://doi.org/10.1007/174_2022_349

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35516-5

  • Online ISBN: 978-3-031-35517-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics