Skip to main content

Tumor Motion Control

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Lung tumors in the thorax move by respiration during radiotherapy. Four-dimensional computed tomography (4DCT) and patient-dependent determination of margins for tumor motion are strongly recommended in the treatment planning of high-dose external beam therapy, such as stereotactic body radiotherapy (SBRT) for lung cancers. As tumor motion control maneuvers, relaxed steady breathing, a stereotactic body frame and compression plate, deep inspiration breath holding, and active breathing control have been introduced. Meanwhile, it has become obvious that the respiratory motion of lung tumors is different in different patients, on different days, and at different times in the same patient. To accommodate this, daily online imaging and soft tissue setup are now recommended. Three-dimensional image-guided radiotherapy (3D IGRT) is increasingly used with or without internal fiducial markers. Broader application of the 3D IGRT as the minimum requirement is proposed to replace 2D IGRT by experts. Adaptive external beam radiotherapy systems (AEBRS) for intrafractionally moving target volumes, such as beam gating and beam tracking, have been developed to improve the reproducibility of tumor motion control. The superiority of 4DCT planning in clinical outcomes has been suggested in a randomized trial of SBRT for early-stage lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anantham D, Feller-Kopman D, Shanmugham LN et al (2007) Electromagnetic navigation bronchoscopy-guided fiducial placement for robotic stereotactic radiosurgery of lung tumors: a feasibility study. Chest 132:930–935

    Google Scholar 

  • Ball D, Mai GT, Vinod S et al (2019) TROG 09.02 CHISEL investigators. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol 20:494–503

    Google Scholar 

  • Bengua G, Ishikawa M, Sutherland K et al (2010) Evaluation of the effectiveness of the stereotactic body frame in reducing respiratory intrafractional organ motion using the real-time tumor-tracking radiotherapy system. Int J Radiat Oncol Biol Phys 77:630–636

    Google Scholar 

  • Berbeco RI, Nishioka S, Shirato H, Chen GT, Jiang SB (2005) Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates. Phys Med Biol 50:3655–3667

    Google Scholar 

  • Bissonnette JP, Franks KN, Purdie TG et al (2009) Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int J Radiat Oncol Biol Phys 75:688–695

    Google Scholar 

  • Bouilhol G, Ayadi M, Rit S et al (2013) Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys Med 29:333–340

    Google Scholar 

  • Bowling MR, Folch EE, Khandhar SJ et al (2019) Fiducial marker placement with electromagnetic navigation bronchoscopy: a subgroup analysis of the prospective, multicenter NAVIGATE study. Ther Adv Respir Dis 2019:1753466619841234

    Google Scholar 

  • Chan TC, Bortfeld T, Tsitsiklis JN (2006) A robust approach to IMRT optimization. Phys Med Biol 51:2567–2583

    Google Scholar 

  • Cole AJ, Hanna GG, Jain S, O’Sullivan JM (2014) Motion management for radical radiotherapy in non-small cell lung cancer. Clin Oncol (R Coll Radiol) 26:67–80

    Google Scholar 

  • De Ruysscher D, Faivre-Finn C, Moeller D et al (2017) Lung Group and the Radiation Oncology Group of the European Organization for Research and Treatment of Cancer (EORTC). European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124:1–10

    Google Scholar 

  • Ezhil M, Vedam S, Balter P et al (2009) Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiat Oncol 4:4. https://doi.org/10.1186/1748-717X-4-4

    Article  Google Scholar 

  • Fredriksson A (2012) A characterization of robust radiation therapy treatment planning methods-from expected value to worst case optimization. Med Phys 39:5169–5181

    Google Scholar 

  • Fujii Y, Matsuura T, Matsuzaki Y, et al (2017) U.S. Patent 20200054897A1

    Google Scholar 

  • Grassberger C, Dowdell S, Lomax A et al (2013) Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys 86:380–386

    Google Scholar 

  • Grassberger C, Dowdell S, Sharp G, Paganetti H (2015) Motion mitigation for lung cancer patients treated with active scanning proton therapy. Med Phys 42:2462–2469

    Google Scholar 

  • Grills IS, Hugo G, Kestin LL et al (2008) Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys 70:1045–1056

    Google Scholar 

  • Hanley J, Debois MM, Mah D et al (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    Google Scholar 

  • Harada T, Shirato H, Ogura S et al (2002) Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 95:1720–1727

    Google Scholar 

  • Harada K, Katoh N, Suzuki R et al (2016) Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT). Phys Med 32:305–311

    Google Scholar 

  • Harley DP, Krimsky WS, Sarkar S, Highfield D, Aygun C, Gurses B (2019) Fiducial marker placement using endobronchial ultrasound and navigational bronchoscopy for stereotactic radiosurgery: an alternative strategy. Ann Thorac Surg 89:368–373

    Google Scholar 

  • Heath E, Unkelbach J, Oelfke U (2009) Incorporating uncertainties in respiratory motion into 4D treatment plan optimization. Med Phys 36:3059–3071

    Google Scholar 

  • Hoisak JD, Sixel KE, Tirona R, Cheung PC, Pignol JP (2004) Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 60:1298–1306

    Google Scholar 

  • Hoogeman M, Prévost JB, Nuyttens J, Pöll J, Levendag P, Heijmen B (2009) Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys 74:297–303

    Google Scholar 

  • ICRU (2010) Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT) ICRU report 83. International Commission on Radiation Units and Measurements, Bethesda, MD

    Google Scholar 

  • Imura M, Yamazaki K, Shirato H et al (2005) Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. Int J Radiat Oncol Biol Phys 63:1442–1447

    Google Scholar 

  • Inoue T, Widder J, van Dijk LV et al (2016) Limited impact of setup and range uncertainties, breathing motion, and interplay effects in robustly optimized intensity modulated proton therapy for stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 96:661–669

    Google Scholar 

  • International Electrotechnical Commission (2019) Medical electrical system – guidelines for sage integration and operation of adaptive external-beam radiotherapy systems for real-time adaptive radiotherapy. IEC Technical Report 62926 Edition 1.0

    Google Scholar 

  • Jakobi A, Perrin R, Knopf A, Richter C (2018) Feasibility of proton pencil beam scanning treatment of free-breathing lung cancer patients. Acta Oncol 57:203–210

    Google Scholar 

  • Josipovic M, Persson GF, Dueck J et al (2016) Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer. Radiother Oncol 118:510–514

    Google Scholar 

  • Kanehira T, Matsuura T, Takao S et al (2017) Impact of real-time image gating on spot scanning proton therapy for lung tumors: a simulation study. Int J Radiat Oncol Biol Phys 97:173–181

    Google Scholar 

  • Kaza E, Dunlop A, Panek R et al (2017) Lung volume reproducibility under ABC control and self-sustained breath-holding. J Appl Clin Med Phys 18:154–162

    Google Scholar 

  • Keall PJ, Nguyen DT, O’Brien R et al (2018) Review of real-time 3-dimensional image guided radiation therapy on standard-equipped cancer radiation therapy systems: are we at the tipping point for the era of real-time radiation therapy? Int J Radiat Oncol Biol Phys 102:922–931

    Google Scholar 

  • Knybel L, Cvek J, Molenda L, Stieberova N, Feltl D (2016) Analysis of lung tumor motion in a large sample: patterns and factors influencing precise delineation of internal target volume. Int J Radiat Oncol Biol Phys 96:751–758

    Google Scholar 

  • Lax I, Blomgren H, Näslund I, Svanström R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33:677–683

    Google Scholar 

  • Li Y, Kardar L, Li X, Li H et al (2014) On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys 41:021721

    Google Scholar 

  • Lin L, Kang M, Huang S et al (2015) Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors. J Appl Clin Med Phys 16:5678

    Google Scholar 

  • Lin H, Shi C, Wang B, Chan MF, Tang X, Ji W (2019a) Towards real-time respiratory motion prediction based on long short-term memory neural networks. Phys Med Biol 64:085010

    Google Scholar 

  • Lin H, Zou W, Li T, Feigenberg SJ, Teo BK, Dong L (2019b) A super-learner model for tumor motion prediction and management in radiation therapy: development and feasibility evaluation. Sci Rep 9:14868

    Google Scholar 

  • Liu HH, Balter P, Tutt T et al (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 68:531–540

    Google Scholar 

  • Liu W, Zhang X, Li Y, Mohan R (2012) Robust optimization of intensity modulated proton therapy. Med Phys 39:1079–1091

    Google Scholar 

  • Matsuura T, Miyamoto N, Shimizu S et al (2013) Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: an initial phantom study using patient tumor trajectory data. Med Phys 40:071729

    Google Scholar 

  • Matsuura T, Fujii Y, Takao S et al (2016) Development and evaluation of a short-range applicator for treating superficial moving tumors with respiratory-gated spot-scanning proton therapy using real-time image guidance. Phys Med Biol 61:1515–1531

    Google Scholar 

  • Miyamoto N, Maeda K, Abo D et al (2019) Quantitative evaluation of image recognition performance of fiducial markers in real-time tumor-tracking radiation therapy. Phys Med 65:33–39

    Google Scholar 

  • Molitoris JK, Diwanji T, Snider JW III et al (2018) Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis 10(Suppl 21):S2437–S2450

    Google Scholar 

  • Nyman J, Hallqvist A, Lund JÃ… et al (2016) SPACE - a randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. Radiother Oncol 121:1–8

    Google Scholar 

  • Ohara K, Okumura T, Akisada M et al (1989) Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17:853–857

    Google Scholar 

  • Onimaru R, Shirato H, Fujino M et al (2005) The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys 63:164–169

    Google Scholar 

  • Onodera Y, Nishioka N, Yasuda K et al (2011) Relationship between diseased lung tissues on computed tomography and motion of fiducial marker near lung cancer. Int J Radiat Oncol Biol Phys 79:1408–1413

    Google Scholar 

  • Park PC, Zhu XR, Lee AK et al (2012) A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys 82:e329–e336

    Google Scholar 

  • Roman NO, Shepherd W, Mukhopadhyay N, Hugo GD, Weiss E (2012) Interfractional positional variability of fiducial markers and primary tumors in locally advanced non-small-cell lung cancer during audiovisual biofeedback radiotherapy. Int J Radiat Oncol Biol Phys 83:1566–1572

    Google Scholar 

  • Schmidt ML, Hoffmann L, Knap MM et al (2016) Cardiac and respiration induced motion of mediastinal lymph node targets in lung cancer patients throughout the radiotherapy treatment course. Radiother Oncol 121:52–58

    Google Scholar 

  • Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Google Scholar 

  • Shimizu S, Shirato H, Kagei K et al (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46:1127–1133

    Google Scholar 

  • Shimizu S, Miyamoto N, Matsuura T et al (2014) A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS One 9:e94971

    Google Scholar 

  • Shirato H, Shimizu S, Bo X et al (1998) Four-dimensional (4-D) treatment planning integrating respiratory phases and three-dimensional (3D) movement of lung and liver tumors using high-speed computed tomography (CT) and magnetic resonance imaging (MRI). In: Lemke HU, Inamura K, Farman A (eds) CAR ’98. Elsevier, Amsterdam, pp 265–270

    Google Scholar 

  • Shirato H, Shimizu S, Shimizu T, Nishioka T, Miyasaka K (1999) Real-time tumour-tracking radiotherapy. Lancet 353:1331–1332

    Google Scholar 

  • Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    Google Scholar 

  • Shirato H, Suzuki K, Sharp GC et al (2006) Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 64:1229–1236

    Google Scholar 

  • Sonke JJ, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J (2009) Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys 74:567–574

    Google Scholar 

  • Takao S, Miyamoto N, Matsuura T et al (2016) Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system. Int J Radiat Oncol Biol Phys 94:172–180

    Google Scholar 

  • Thomas DH, Santhanam A, Kishan AU et al (2018) Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. Br J Radiol 91:20170522

    Google Scholar 

  • Unkelbach J, Paganetti H (2018) Robust proton treatment planning: physical and biological optimization. Semin Radiat Oncol 28:88–96

    Google Scholar 

  • Unkelbach J, Chan TC, Bortfeld T (2007) Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 52:2755–2773

    Google Scholar 

  • Wade OL (1954) Movements of the thoracic cage and diaphragm in respiration. J Physiol 124:193–212

    Google Scholar 

  • Wolthaus JW, Sonke JJ, van Herk M et al (2008) Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys 70:1229–1238

    Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Google Scholar 

  • Yamada T, Miyamoto N, Matsuura T et al (2016) Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique. Phys Med 32:932–937

    Google Scholar 

  • Yock AD, Mohan R, Flampouri S et al (2019) Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol 9:200–207

    Google Scholar 

  • Yoshimura T, Shimizu S, Hashimoto T et al (2020) Analysis of treatment process time for real-time-image gated-spot-scanning proton-beam therapy (RGPT) system. J Appl Clin Med Phys 21:38–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Shirato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirato, H., Shimizu, S., Taguchi, H., Takao, S., Miyamoto, N., Matsuura, T. (2022). Tumor Motion Control. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_348

Download citation

  • DOI: https://doi.org/10.1007/174_2022_348

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics