Skip to main content

Pulmonary Carcinoid

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 321 Accesses

Abstract

Pulmonary carcinoid tumors are uncommon neuroendocrine tumors of the lung that lack invasive characteristics. They are histologically characterized as typical (low grade) or atypical (high grade) carcinoids based on mitotic activity and presence of necrosis. Pulmonary carcinoid tumors most commonly present as asymptomatic, incidental findings on chest radiographs. Diagnosis is confirmed via tissue sampling, although advanced imaging modalities such as somatostatin-based imaging may prove useful. Surgical resection is the primary treatment for these tumors; however, systemic therapies or radiation treatments may be considered in more advanced or medically inoperable setting. Medical therapies may be appropriate for patients with paraneoplastic syndromes, including carcinoid syndrome. Prognosis for patients with typical carcinoids is relatively favorable, although worse in patients with atypical carcinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Toubah T, Morse B, Strosberg J (2020) Capecitabine and temozolomide in advanced lung neuroendocrine neoplasms. Oncologist 25(1):e48–e52

    Google Scholar 

  • Ameer F et al (2005) Bronchial carcinoid presenting with abdominal pain. J Coll Physicians Surg Pak 15(8):498–499

    Google Scholar 

  • Anderson KL Jr et al (2017) Adjuvant chemotherapy does not confer superior survival in patients with atypical carcinoid tumors. Ann Thorac Surg 104(4):1221–1230

    Google Scholar 

  • Aydin E et al (2011) Long-term outcomes and prognostic factors of patients with surgically treated pulmonary carcinoid: our institutional experience with 104 patients. Eur J Cardiothorac Surg 39(4):549–554

    Google Scholar 

  • Beasley MB et al (2000) Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum Pathol 31(10):1255–1265

    Google Scholar 

  • Bhansali A et al (2002) Acromegaly: a rare manifestation of bronchial carcinoid. Asian Cardiovasc Thorac Ann 10(3):273–274

    Google Scholar 

  • Bongiovanni A et al (2017) Outcome analysis of first-line somatostatin analog treatment in metastatic pulmonary neuroendocrine tumors and prognostic significance of (18)FDG-PET/CT. Clin Lung Cancer 18(4):415–420

    MathSciNet  Google Scholar 

  • Bukowski RM et al (1987) A phase II trial of combination chemotherapy in patients with metastatic carcinoid tumors. A Southwest Oncology Group Study. Cancer 60(12):2891–2895

    Google Scholar 

  • Bushnell DL Jr et al (2010) 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 28(10):1652–1659

    Google Scholar 

  • Cañizares MA et al (2014) Atypical carcinoid tumours of the lung: prognostic factors and patterns of recurrence. Thorax 69(7):648–653

    Google Scholar 

  • Caplin ME et al (2015) Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol 26(8):1604–1620

    Google Scholar 

  • Cardillo G et al (2004) Bronchial carcinoid tumors: nodal status and long-term survival after resection. Ann Thorac Surg 77(5):1781–1785

    Google Scholar 

  • Carretta A et al (2000) Diagnostic and therapeutic management of neuroendocrine lung tumors: a clinical study of 44 cases. Lung Cancer 29(3):217–225

    Google Scholar 

  • Cattoni M et al (2017) External validation of a prognostic model of survival for resected typical bronchial carcinoids. Ann Thorac Surg 104(4):1215–1220

    Google Scholar 

  • Chakravarthy A, Abrams RA (1995) Radiation therapy in the management of patients with malignant carcinoid tumors. Cancer 75(6):1386–1390

    Google Scholar 

  • Chan JA et al (2012) Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol 30(24):2963–2968

    Google Scholar 

  • Chong S et al (2007) Integrated PET/CT of pulmonary neuroendocrine tumors: diagnostic and prognostic implications. AJR Am J Roentgenol 188(5):1223–1231

    Google Scholar 

  • Chong CR et al (2014) Chemotherapy for locally advanced and metastatic pulmonary carcinoid tumors. Lung Cancer 86(2):241–246

    Google Scholar 

  • Chun SG et al (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol 35(1):56–62

    Google Scholar 

  • Colaco RJ, Decker RH (2015) Stereotactic radiotherapy in the treatment of primary bronchial carcinoid tumor. Clin Lung Cancer 16(2):e11–e14

    Google Scholar 

  • Cusumano G et al (2017) Surgical resection for pulmonary carcinoid: long-term results of multicentric study-the importance of pathological N status, more than we thought. Lung 195(6):789–798

    Google Scholar 

  • Dasari A et al (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3(10):1335–1342

    Google Scholar 

  • Divisi D, Crisci R (2005) Carcinoid tumors of the lung and multimodal therapy. Thorac Cardiovasc Surg 53(3):168–172

    Google Scholar 

  • Ekeblad S et al (2007) Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res 13(10):2986–2991

    Google Scholar 

  • Engstrom PF et al (1984) Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. J Clin Oncol 2(11):1255–1259

    Google Scholar 

  • Fazel P et al (2008) The ectopic adrenocorticotropic hormone syndrome in carcinoid tumors. Proc (Bayl Univ Med Cent) 21(2):140–143

    Google Scholar 

  • Fazio N et al (2013) Everolimus plus octreotide long-acting repeatable in patients with advanced lung neuroendocrine tumors: analysis of the phase 3, randomized, placebo-controlled RADIANT-2 study. Chest 143(4):955–962

    Google Scholar 

  • Fazio N et al (2018) Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis. Cancer Sci 109(1):174–181

    Google Scholar 

  • Feldman JM (1985) Increased dopamine production in patients with carcinoid tumors. Metabolism 34(3):255–260

    Google Scholar 

  • Feldman JM, Plonk JW, Cornette JC (1974) Serum prostaglandin F2α concentration in the carcinoid syndrome. Prostaglandins 7(6):501–506

    Google Scholar 

  • Ferguson MK (2000) et al. Long-term outcome after resection for bronchial carcinoid tumors. 18(2):156–161

    Google Scholar 

  • Fernandez-Cuesta L et al (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518

    Google Scholar 

  • Ferolla P et al (2009) Tumorlets, multicentric carcinoids, lymph-nodal metastases, and long-term behavior in bronchial carcinoids. J Thorac Oncol 4(3):383–387

    Google Scholar 

  • Fiala P et al (2003) Bronchial carcinoid tumors: long-term outcome after surgery. Neoplasma 50(1):60–65

    Google Scholar 

  • Filosso PL et al (2019) Anatomical resections are superior to wedge resections for overall survival in patients with stage 1 typical carcinoids. Eur J Cardiothorac Surg 55(2):273–279

    Google Scholar 

  • Fink G et al (2001) Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest 119(6):1647–1651

    Google Scholar 

  • García-Yuste M et al (2007) Typical and atypical carcinoid tumours: analysis of the experience of the Spanish Multi-centric Study of Neuroendocrine Tumours of the Lung. Eur J Cardiothorac Surg 31(2):192–197

    Google Scholar 

  • Gustafsen J, Boesby S, Man WK (1988) Histamine in carcinoid syndrome. Agents Actions 25(1–2):1–3

    Google Scholar 

  • Halperin DM et al (2017) Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol 18(4):525–534

    Google Scholar 

  • Han B et al (2013) Clinical outcomes of atypical carcinoid tumors of the lung and thymus: 7-year experience of a rare malignancy at single institute. Med Oncol 30(1):479

    Google Scholar 

  • Hassan MM et al (2008) Risk factors associated with neuroendocrine tumors: a U.S.-based case-control study. Int J Cancer 123(4):867–873

    Google Scholar 

  • Hemminki K, Li X (2001) Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer 92(8):2204–2210

    Google Scholar 

  • Herde RF et al (2018) Primary pulmonary carcinoid tumor: a long-term single institution experience. Am J Clin Oncol 41(1):24–29

    Google Scholar 

  • Hobbins S et al (2016) Patient characteristics, treatment and survival in pulmonary carcinoid tumours: an analysis from the UK National Lung Cancer Audit. BMJ Open 6(9):e012530

    Google Scholar 

  • Hobday TJ et al (2007) MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J Clin Oncol 25(18_Suppl):4504

    Google Scholar 

  • Hofland J et al (2019) Management of carcinoid syndrome: a systematic review and meta-analysis. Endocr Relat Cancer 26(3):R145–r156

    Google Scholar 

  • Huang Y et al (2018) Assessment of the prognostic factors in patients with pulmonary carcinoid tumor: a population-based study. Cancer Med 7(6):2434–2441

    Google Scholar 

  • Jiang Y, Hou G, Cheng W (2019) The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/CT in the evaluation of primary pulmonary carcinoid: a systematic review and meta-analysis. Medicine 98(10):e14769

    Google Scholar 

  • Johnson R et al (2011) Histology, not lymph node involvement, predicts long-term survival in bronchopulmonary carcinoids. Am Surg 77(12):1669–1674

    Google Scholar 

  • Kaplan B et al (2003) Outcomes and patterns of failure in bronchial carcinoid tumors. Int J Radiat Oncol Biol Phys 55(1):125–131

    Google Scholar 

  • Kayani I et al (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50(12):1927–1932

    Google Scholar 

  • Kiesewetter B, Raderer M (2013) Ondansetron for diarrhea associated with neuroendocrine tumors. N Engl J Med 368(20):1947–1948

    Google Scholar 

  • Kiesewetter B et al (2019) Oral ondansetron offers effective antidiarrheal activity for carcinoid syndrome refractory to somatostatin analogs. Oncologist 24(2):255–258

    Google Scholar 

  • Kim JT et al (2015) Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget 6(29):26960–26970

    Google Scholar 

  • Kneuertz PJ et al (2018) Incidence and prognostic significance of carcinoid lymph node metastases. Ann Thorac Surg 106(4):981–988

    Google Scholar 

  • Krug S et al (2016) Acromegaly in a patient with a pulmonary neuroendocrine tumor: case report and review of current literature. BMC Res Notes 9:326

    Google Scholar 

  • Kulke MH, Mayer RJ (1999) Carcinoid tumors. N Engl J Med 340(11):858–868

    Google Scholar 

  • Kulke MH et al (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26(20):3403–3410

    Google Scholar 

  • Kuyumcu S et al (2012) Somatostatin receptor scintigraphy with 111In-octreotide in pulmonary carcinoid tumours correlated with pathological and 18FDG PET/CT findings. Ann Nucl Med 26(9):689–697

    Google Scholar 

  • Kwekkeboom DJ et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46 Suppl 1:62s–6s

    Google Scholar 

  • Kyriss T et al (2006) Carcinoid lung tumors: long-term results from 111 resections. Thorac Surg Sci 3:Doc03

    Google Scholar 

  • Leoncini E et al (2016) Risk factors for neuroendocrine neoplasms: a systematic review and meta-analysis. Ann Oncol 27(1):68–81

    Google Scholar 

  • Machuca TN et al (2010) Surgical treatment of bronchial carcinoid tumors: a single-center experience. Lung Cancer 70(2):158–162

    Google Scholar 

  • Maggio I et al (2020) Landscape and future perspectives of immunotherapy in neuroendocrine neoplasia. Cancers (Basel) 12(4):832

    Google Scholar 

  • Marty-Ané CH et al (1995) Carcinoid tumors of the lung: do atypical features require aggressive management? Ann Thorac Surg 59(1):78–83

    Google Scholar 

  • Mehnert JM et al (2020) Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: results from the KEYNOTE-028 study. Cancer 126(13):3021–3030

    Google Scholar 

  • Mezzetti M et al (2003) Assessment of outcomes in typical and atypical carcinoids according to latest WHO classification. Ann Thorac Surg 76(6):1838–1842

    Google Scholar 

  • Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97(4):934–959

    Google Scholar 

  • Moertel CG, Hanley JA (1979) Combination chemotherapy trials in metastatic carcinoid tumor and the malignant carcinoid syndrome. Cancer Clin Trials 2(4):327–334

    Google Scholar 

  • Musi M et al (1998) Bronchial carcinoid tumours: a study on clinicopathological features and role of octreotide scintigraphy. Lung Cancer 22(2):97–102

    Google Scholar 

  • National Comprehensive Cancer Network (2020) Neuroendocrine and adrenal tumors (Version 2.2020). https://www.nccn.org/professionals/physician_gls/pdf/neuroendocrine.pdf. Accessed 24 Jul 2020

  • Nguyen BD, Ram PC (2006) Bronchopulmonary carcinoid tumor and related cervical vertebral metastasis with PET-positive and octreotide-negative scintigraphy. Clin Nucl Med 31(2):101–103

    Google Scholar 

  • Nussbaum DP et al (2015) Defining the role of adjuvant chemotherapy after lobectomy for typical bronchopulmonary carcinoid tumors. Ann Thorac Surg 99(2):428–434

    Google Scholar 

  • Okereke IC et al (2016) Outcomes after surgical resection of pulmonary carcinoid tumors. J Cardiothorac Surg 11:35

    Google Scholar 

  • Okoye CC et al (2014) Divergent management strategies for typical versus atypical carcinoid tumors of the thoracic cavity. Am J Clin Oncol 37(4):350–355

    Google Scholar 

  • Onishi H et al (2007) Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2(7 Suppl 3):S94–S100

    Google Scholar 

  • Ott PA et al (2018) T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 37(4):318–327

    Google Scholar 

  • Pavel ME et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808):2005–2012

    Google Scholar 

  • Pelosi G et al (2014) Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol 9(3):273–284

    Google Scholar 

  • Phan AT et al (2010) NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas 39(6):784–798

    Google Scholar 

  • Pikin O (2017) et al. Two-stage surgery without parenchyma resection for endobronchial carcinoid tumor. 104(6):1846–1851

    Google Scholar 

  • PORT Meta-analysis Trialists Group (1998) Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet 352(9124):257–263

    Google Scholar 

  • Ramirez RA et al (2017) Prognostic factors in typical and atypical pulmonary carcinoids. Ochsner J 17(4):335–340

    Google Scholar 

  • Rea F et al (2007) Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients. Eur J Cardiothorac Surg 31(2):186–191

    Google Scholar 

  • Reuling EMBP et al (2019) Endobronchial and surgical treatment of pulmonary carcinoid tumors: a systematic literature review. Lung Cancer 134:85–95

    Google Scholar 

  • Rosenzweig KE et al (2007) Involved-field radiation therapy for inoperable non-small-cell lung cancer. J Clin Oncol 25(35):5557–5561

    Google Scholar 

  • Rugge M et al (2008) Bronchopulmonary carcinoid: phenotype and long-term outcome in a single-institution series of Italian patients. Clin Cancer Res 14(1):149–154

    Google Scholar 

  • Sadowski SM et al (2018) Nationwide multicenter study on the management of pulmonary neuroendocrine (carcinoid) tumors. Endocr Connect 7(1):8–15

    Google Scholar 

  • Scanagatta P et al (2004) Cushing’s syndrome induced by bronchopulmonary carcinoid tumours: a review of 98 cases and our experience of two cases. Chir Ital 56(1):63–70

    Google Scholar 

  • Schrevens L et al (2004) Clinical-radiological presentation and outcome of surgically treated pulmonary carcinoid tumours: a long-term single institution experience. Lung Cancer 43(1):39–45

    Google Scholar 

  • Scoazec JY (2013) Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 97(1):45–56

    Google Scholar 

  • Simbolo M et al (2017) Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 241(4):488–500

    Google Scholar 

  • Singh D et al (2019) Inoperable pulmonary carcinoid tumors: local control rates with stereotactic body radiotherapy/hypofractionated RT with image-guided radiotherapy. Clin Lung Cancer 20(3):e284–e290

    MathSciNet  Google Scholar 

  • Skuladottir H et al (2002) Pulmonary neuroendocrine tumors: incidence and prognosis of histological subtypes. A population-based study in Denmark. Lung Cancer 37(2):127–135

    Google Scholar 

  • Soga J, Yakuwa Y (1999) Bronchopulmonary carcinoids: an analysis of 1,875 reported cases with special reference to a comparison between typical carcinoids and atypical varieties. Ann Thorac Cardiovasc Surg 5(4):211–219

    Google Scholar 

  • Steuer CE et al (2015) Atypical carcinoid tumor of the lung: a surveillance, epidemiology, and end results database analysis. J Thorac Oncol 10(3):479–485

    Google Scholar 

  • Stolz A et al (2015) Long-term outcomes and prognostic factors of patients with pulmonary carcinoid tumors. Neoplasma 62(3):478–483

    Google Scholar 

  • Strosberg J et al (2017) Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 376(2):125–135

    Google Scholar 

  • Swarts DR et al (2014) MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab 99(2):E374–E378

    Google Scholar 

  • Travis WD et al (1998) Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 22(8):934–944

    Google Scholar 

  • Travis WD et al (2008) The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. J Thorac Oncol 3(11):1213–1223

    Google Scholar 

  • Travis WD et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260

    Google Scholar 

  • Verma V et al (2017) Multi-institutional experience of stereotactic ablative radiation therapy for stage I small cell lung cancer. Int J Radiat Oncol Biol Phys 97(2):362–371

    Google Scholar 

  • Waldherr C et al (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43(5):610–616

    Google Scholar 

  • Walter T et al (2016) Evaluation of the combination of oxaliplatin and 5-fluorouracil or gemcitabine in patients with sporadic metastatic pulmonary carcinoid tumors. Lung Cancer 96:68–73

    Google Scholar 

  • Warren WH, Gould VE (1990) Long-term follow-up of classical bronchial carcinoid tumors. Clinicopathologic observations. Scand J Thorac Cardiovasc Surg 24(2):125–130

    Google Scholar 

  • Wegner RE et al (2019a) Stereotactic body radiation therapy versus fractionated radiation therapy for early-stage bronchopulmonary carcinoid. Lung Cancer Manag 8(3):Lmt14

    Google Scholar 

  • Wegner RE et al (2019b) The role of adjuvant therapy for atypical bronchopulmonary carcinoids. Lung Cancer 131:90–94

    Google Scholar 

  • Wirth LJ et al (2004) Outcome of patients with pulmonary carcinoid tumors receiving chemotherapy or chemoradiotherapy. Lung Cancer 44(2):213–220

    Google Scholar 

  • Wymenga AN et al (1998) Effects of ondansetron on gastrointestinal symptoms in carcinoid syndrome. Eur J Cancer 34(8):1293–1294

    Google Scholar 

  • Yao JC et al (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 26(8):1316–1323

    Google Scholar 

  • Yao JC et al (2016) Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387(10022):968–977

    Google Scholar 

  • Zhong C-X et al (2012) Long-term outcomes of surgical treatment for pulmonary carcinoid tumors: 20 years’ experience with 131 patients. Chin Med J (Engl) 125(17):3022–3026

    Google Scholar 

  • Zuetenhorst JM et al (2002) Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun 23(8):735–741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshal R. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, R.R., De, B., Verma, V. (2022). Pulmonary Carcinoid. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_347

Download citation

  • DOI: https://doi.org/10.1007/174_2022_347

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics