Skip to main content

Image-Guided Radiotherapy in Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 327 Accesses

Abstract

The technological advances in radiation therapy over the last several decades have dramatically improved outcomes for lung cancer patients treated with radiation. In the era of two-dimensional (2D) radiation therapy, poor imaging quality during planning and treatment necessitated inclusion of a large volume of normal tissue in the treatment fields and long treatment courses delivering small doses of radiation therapy daily even for early-stage cancer. As a result, dose was limited due to toxicity, and tumor control was suboptimal. Three-dimensional (3D) conformal radiotherapy incrementally improved outcomes due to better tumor and organ spatial delineation but was still unable to account for real-time tumor motion. The advent of four-dimensional (4D) CT planning addressed this limitation by permitting the characterization of individualized tumor motion during the respiratory cycle. Further advancements in functional and anatomical imaging, precision of radiation delivery devices, and sophisticated onboard image guidance have made it possible to deliver modern-day hypofractionated radiation therapy or stereotactic body radiation therapy (SBRT) for thoracic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins KM, Chen Y, Elliott DA et al (2015) The impact of anatomic tumor location on inter-fraction tumor motion during lung stereotactic body radiation therapy (SBRT). J Radiosurg SBRT 3(3):203–213

    Google Scholar 

  • Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86

    Article  Google Scholar 

  • Cremonesi M, Gilardi L, Ferrari ME et al (2017) Role of interim 18F-FDG-PET/CT for the early prediction of clinical outcomes of non-small cell lung cancer (NSCLC) during radiotherapy or chemo-radiotherapy. A systematic review. Eur J Nucl Med Mol Imaging 44(11):1915–1927

    Article  Google Scholar 

  • De Neve W, Van den Heuvel F, De Beukeleer M et al (1992) Routine clinical on-line portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radiother Oncol 24(1):45–54

    Article  Google Scholar 

  • Finazzi T, Palacios MA, Spoelstra FOB et al (2019) Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors. Int J Radiat Oncol Biol Phys 104(4):933–941

    Article  Google Scholar 

  • Gardner SJ, Mao W, Liu C et al (2019) Improvements in CBCT image quality using a novel iterative reconstruction algorithm: a clinical evaluation. Adv Radiat Oncol 4(2):390–400

    Article  Google Scholar 

  • Glide-Hurst CK, Lee P, Yock AD et al (2021) Adaptive radiation therapy (ART) strategies and technical considerations: a state of the art review from NRG oncology. Int J Radiat Oncol Biol Phys 109:1054. http://www.sciencedirect.com/science/article/pii/S0360301620344096

    Article  Google Scholar 

  • Henke L, Kashani R, Yang D et al (2016) Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys 96(5):1078–1086

    Article  Google Scholar 

  • Henke LE, Olsen JR, Contreras JA et al (2019) Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Adv Radiat Oncol 4(1):201–209

    Article  Google Scholar 

  • Konert T, Vogel W, MacManus MP et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34

    Article  Google Scholar 

  • Kong F-M, Ten Haken RK, Schipper M et al (2017) Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol 3(10):1358–1365

    Article  Google Scholar 

  • Kong FM, Hu C, Machtay M, Haken RT, Xiao Y, Matuszak M, Hirsh V, Pryma D, Siegel BA, Gelblum D, Hayman J, Robinson C, Loo Jr BW, Videtic GMM, Faria SL, Ferguson C, Dunlap N, Kundapu V, Paulus R, Bradley J (2021) Results of RTOG1106/ACRIN9969: a randomized phase II trial of individualized adaptive radiotherapy using mid-treatment FDG-PET/CT and modern technology in locally advanced non-small cell lung cancer (NSCLC). Paper presented at the annual meeting of the International Association for the Study of Lung Cancer Virtual meeting platform 2021

    Google Scholar 

  • Korreman S, Mostafavi H, Le Q-T, Boyer A (2006) Comparison of respiratory surrogates for gated lung radiotherapy without internal fiducials. Acta Oncol 45(7):935–942

    Article  Google Scholar 

  • Kothary N, Heit JJ, Louie JD et al (2009) Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol 20(2):235–239

    Article  Google Scholar 

  • Kupelian PA, Forbes A, Willoughby TR et al (2007) Implantation and stability of metallic fiducials within pulmonary lesions. Int J Radiat Oncol Biol Phys 69(3):777–785

    Article  Google Scholar 

  • Lagendijk JJW, Raaymakers BW, Raaijmakers AJE et al (2008) MRI/linac integration. Radiother Oncol 86(1):25–29

    Article  Google Scholar 

  • Liu HH, Balter P, Tutt T et al (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 68(2):531–540

    Article  Google Scholar 

  • Mac Manus MP, Hicks RJ (2007) Impact of PET on radiation therapy planning in lung cancer. Radiol Clin North Am 45(4):627–638. v

    Article  Google Scholar 

  • Michalski D, Sontag M, Li F et al (2008) Four-dimensional computed tomography-based interfractional reproducibility study of lung tumor intrafractional motion. Int J Radiat Oncol Biol Phys 71(3):714–724

    Article  Google Scholar 

  • Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199

    Article  Google Scholar 

  • NCCN (2021) Clinical practice guidelines. Non-small cell lung cancer (Version 3.2021)

    Google Scholar 

  • Nehmeh SA, Erdi YE, Pan T et al (2004a) Four-dimensional (4D) PET/CT imaging of the thorax: 4D PET/CT. Med Phys 31(12):3179–3186

    Article  Google Scholar 

  • Nehmeh SA, Erdi YE, Pan T et al (2004b) Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 31(6):1333–1338

    Article  Google Scholar 

  • Onishi H, Araki T, Shirato H et al (2004) Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101(7):1623–1631

    Article  Google Scholar 

  • Prenzel KL, Mönig SP, Sinning JM et al (2003) Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest 123(2):463–467

    Article  Google Scholar 

  • Richter A, Wilbert J, Baier K, Flentje M, Guckenberger M (2010) Feasibility study for markerless tracking of lung tumors in stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 78(2):618–627

    Article  Google Scholar 

  • Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834. https://doi.org/10.1016/s0360-3016(02)02803-1

    Article  Google Scholar 

  • Shimizu S, Shirato H, Kagei K et al (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46(5):1127–1133. https://doi.org/10.1016/s0360-3016(99)00352-1

    Article  Google Scholar 

  • Shirato H, Shimizu S, Kunieda T et al (2000) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48(4):1187–1195

    Article  Google Scholar 

  • Shirvani SM, Huntzinger CJ, Melcher T et al (2021) Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br J Radiol 94(1117):20200873

    Article  Google Scholar 

  • Sonke J-J, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J (2009) Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys 74(2):567–574

    Article  Google Scholar 

  • Sweeney RA, Seubert B, Stark S et al (2012) Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiat Oncol 7(1):81

    Article  Google Scholar 

  • Timmerman RD, Hu C, Michalski JM et al (2018a) Long-term results of stereotactic body radiation therapy in medically inoperable stage I non-small cell lung cancer. JAMA Oncol 4(9):1287–1288

    Article  Google Scholar 

  • Timmerman RD, Paulus R, Pass HI et al (2018b) Stereotactic body radiation therapy for operable early-stage lung cancer. JAMA Oncol 4:1263. https://doi.org/10.1001/jamaoncol.2018.1251

    Article  Google Scholar 

  • Videtic GM, Paulus R, Singh AK et al (2019) Long-term follow-up on NRG oncology RTOG 0915 (NCCTG N0927): a randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Int J Radiat Oncol Biol Phys 103(5):1077–1084

    Article  Google Scholar 

  • Wu J, Lei P, Shekhar R, Li H, Suntharalingam M, D’Souza WD (2009) Do tumors in the lung deform during normal respiration? An image registration investigation. Int J Radiat Oncol Biol Phys 75(1):268–275

    Article  Google Scholar 

  • Xia T, Li H, Sun Q et al (2006) Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 66(1):117–125

    Article  Google Scholar 

  • Yegya-Raman N, Kim S, Deek MP et al (2018) Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in unresectable non-small cell lung cancer. Int J Radiat Oncol Biol Phys 101(5):1104–1112

    Article  Google Scholar 

  • Yuan S, Yu Q, Wang S et al (2020) Individualized adaptive radiotherapy versus standard radiotherapy with chemotherapy for patients with locally advanced non-small cell lung cancer: a multicenter randomized phase III clinical trial CRTOG1601. Int J Radiat Oncol Biol Phys 108(3):S105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percy Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weng, J., Kupelian, P., Lee, P. (2022). Image-Guided Radiotherapy in Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_345

Download citation

  • DOI: https://doi.org/10.1007/174_2022_345

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics