Skip to main content

The Role of Nanotechnology for Diagnostic and Therapy Strategies in Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 419 Accesses

Abstract

Lung cancer is globally the second most common cancer accounting for millions of deaths each year in both men and women. Early diagnosis is still difficult due to the cancer growing silently in the lung resulting in late diagnosis and high mortality. In recent years, nanotechnology has been advancing the diagnosis and cancer therapy modalities. A number of nanotherapies based around nanoparticles (NPs) have been developed to treat ailments such as pain, infectious diseases, and cancer. Nano-based medicine is providing a pharmacokinetic and pharmacodynamic advantage over current chemotherapy such as bioavailability, intestinal absorption, solubility, and targeted delivery. The progress that has led to the development of emerging cancer therapies in the clinic for the treatment of lung cancer is reaching fruition. Herein, this chapter outlines the current developments in nanomedicine for lung cancer diagnosis and therapy using NPs including liposomes, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes, and magnetic NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian M et al (2019) Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells. J Cancer Res Clin Oncol 145(1):97–107

    Google Scholar 

  • Abraham SA et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97

    Google Scholar 

  • Abraxis BioScience LLC (2021) Dosage & administration: abraxane + carboplatin. [cited 2021 07/02]. https://www.abraxanepro.com/advanced-non-small-cell-lung-cancer/dosing

  • Ahmed KS et al (2019) Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 27(7):742–761

    Google Scholar 

  • Ahn HK et al (2014) A phase II trial of Cremophor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74(2):277–282

    Google Scholar 

  • Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Google Scholar 

  • Andrade F et al (2011) Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond) 6(1):123–141

    Google Scholar 

  • Arya N et al (2013) Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5(7):2818–2829

    Google Scholar 

  • Asai N et al (2014) Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol 6(2):69–82

    Google Scholar 

  • Babaei M, Ganjalikhani M (2014) A systematic review of gold nanoparticles as novel cancer therapeutics. J Nanomedicine 1:211–219

    Google Scholar 

  • Bangham AD (1993) Liposomes: the Babraham connection. Chem Phys Lipids 64(1-3):275–285

    Google Scholar 

  • Baptista P (2009) Cancer nanotechnology—prospects for cancer diagnostics and therapy. Curr Cancer Ther Rev 5(2):80–88

    Google Scholar 

  • Barabas K et al (2008) Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 6(1):1–18

    Google Scholar 

  • Beckles MA et al (2003) Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest 123(1 Suppl):97S–104S

    Google Scholar 

  • Berger M (2021) Carbon nanotubes—what they are, how they are made, what they are used for. [cited 2021 11/01]. https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_22.php

  • Bernabeu E et al (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1-2):474–495

    Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham, pp 33–93

    Google Scholar 

  • Biju V et al (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495

    Google Scholar 

  • Birring SS, Peake MD (2005) Symptoms and the early diagnosis of lung cancer. Thorax 60(4):268–269

    Google Scholar 

  • Boulikas T (2009) Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 18(8):1197–1218

    Google Scholar 

  • Boulikas T et al (2005) Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res 25(4):3031–3039

    Google Scholar 

  • Boulikas T et al (2007) Lipoplatin plus gemcitabine versus cisplatin plus gemcitabine in NSCLC: preliminary results of a phase III trial. J Clin Oncol 25:18028–18028

    Google Scholar 

  • Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Google Scholar 

  • Cabrera L et al (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441

    Google Scholar 

  • Cai W et al (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32

    Google Scholar 

  • Cancer Intelligence team (2019) Cancer in the UK. [cited 2020 08/11]. https://www.cancerresearchuk.org/sites/default/files/state_of_the_nation_april_2019.pdf

  • Cancer Research UK (2019a) Treatment for non-small cell lung cancer (NSCLC). [cited 2020 14/12]. https://www.cancerresearchuk.org/about-cancer/lung-cancer/treatment/non-small-cell-lung-cancer

  • Cancer Research UK (2019b) Treatment for small cell lung cancer (SCLC). [cited 15/12 2020]. https://www.cancerresearchuk.org/about-cancer/lung-cancer/treatment/small-cell-lung-cancer

  • Cancer Research UK (2020a) Cancer mortality for all cancers combined. [cited 2020 17/12]. https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality/all-cancers-combined

  • Cancer Research UK (2020b) TNM staging. [cited 2020 17/12]. https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/tnm-staging

  • Cancer Research UK (2020c) Limited and extensive stage (small cell lung cancer). [cited 2020 17/12]. https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/limited-extensive

  • Cancer Research UK (2020d) Doxorubicin. [cited 25/01 2021]. https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/doxorubicin

  • Cancer.Net Editorial Board (2019) Lung cancer—small cell: stages. [cited 2020 17/12]. https://www.cancer.net/cancer-types/lung-cancer-small-cell/stages#:~:text=About%201%20out%20of%203,stage%20disease%20when%20first%20diagnosed

  • Chen J et al (2007a) Immunogold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    MathSciNet  Google Scholar 

  • Chen YH et al (2007b) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722

    MathSciNet  Google Scholar 

  • Chen X, Li Q, Wang X (2014) Gold nanostructures for bioimaging, drug delivery and therapeutics. In: Baltzer N, Copponnex T (eds) Precious metals for biomedical applications. Woodhead Publishing, pp 163–176

    Google Scholar 

  • Chen Y et al (2020) Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomedicine 15:9407–9430

    Google Scholar 

  • Choi YE, Kwak JW, Park JW (2010) Nanotechnology for early cancer detection. Sensors (Basel) 10(1):428–455

    Google Scholar 

  • Cifter G et al (2015) Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles. Phys Med 31(8):1070–1074

    Google Scholar 

  • Cryer AM, Thorley AJ (2019) Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 198:189–205

    Google Scholar 

  • Davis C (2020) Small cell lung cancer vs. non-small cell lung cancer. [cited 2020 16/11]. https://www.medicinenet.com/non-small_cell_lung_cancer_vs_small_cell/article.htm

  • de Groot PM et al (2018) The epidemiology of lung cancer. Transl Lung Cancer Res 7(3):220–233

    Google Scholar 

  • Del Ciello A et al (2017) Missed lung cancer: when, where, and why? Diagn Interv Radiol 23(2):118–126

    Google Scholar 

  • Devesa SS et al (2005) International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 117(2):294–299

    Google Scholar 

  • Dhanikula RS, Hildgen P (2007) Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials 28(20):3140–3152

    Google Scholar 

  • Drugs.com (2021) Abraxane FDA approval history. [cited 2021 06/02]. https://www.drugs.com/history/abraxane.html

  • Ealia S, Saravanakumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263:032019

    Google Scholar 

  • Eatemadi A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Google Scholar 

  • Elhissi AM et al (2012) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012:837327

    Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Google Scholar 

  • Emerich D, Thanos C (2005) Nanotechnology and medicine. Expert Opin Biol Ther 3(4)

    Google Scholar 

  • ESMO (2015) Personalised medicine at a glance: lung cancer. [cited 2020 15/12]. https://www.esmo.org/for-patients/personalised-medicine-explained/Lung-Cancer

  • European Medicines Agency (2020) Abraxane. [cited 2021 06/02]. https://www.ema.europa.eu/en/medicines/human/EPAR/abraxane

  • Fan L et al (2016) Identification of serum miRNAs by nano-quantum dots microarray as diagnostic biomarkers for early detection of non-small cell lung cancer. Tumour Biol 37(6):7777–7784

    Google Scholar 

  • Fantini M et al (2011) Lipoplatin treatment in lung and breast cancer. Chemother Res Pract 2011:125192

    Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Google Scholar 

  • Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16(3):175–183

    Google Scholar 

  • Gaspar MM et al (2012) Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv 25(6):310–318

    Google Scholar 

  • Gelderblom H et al (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598

    Google Scholar 

  • Giljohann DA et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49(19):3280–3294

    Google Scholar 

  • Gitsov I, Lin C (2005) Dendrimers—nanoparticles with precisely engineered surfaces. Curr Org Chem 9:1025–1051

    Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    Google Scholar 

  • Gul S et al (2019) A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater 6:179

    Google Scholar 

  • Gupta U et al (2010) Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm 393(1-2):185–196

    Google Scholar 

  • Guthi JS et al (2010) MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7(1):32–40

    Google Scholar 

  • Han CY et al (2013) A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro. Int J Nanomedicine 8:1541–1549

    Google Scholar 

  • Han C et al (2014) Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artif Cells Nanomed Biotechnol 42(3):161–166

    MathSciNet  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Google Scholar 

  • He H et al (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290

    Google Scholar 

  • Heineman DJ, Daniels JM, Schreurs WH (2017) Clinical staging of NSCLC: current evidence and implications for adjuvant chemotherapy. Ther Adv Med Oncol 9(9):599–609

    Google Scholar 

  • Hirsch LR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554

    Google Scholar 

  • Holban A, Grumezescu A, Andronescu E (2016) Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces. In: Grumezescu A (ed) Surface chemistry of nanobiomaterials. William Andrew Publishing, pp 301–327

    Google Scholar 

  • Jain PK et al (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Google Scholar 

  • Janfaza S et al (2019) A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes. Mikrochim Acta 186(3):137

    Google Scholar 

  • Jovin TM (2003) Quantum dots finally come of age. Nat Biotechnol 21(1):32–33

    Google Scholar 

  • Jurj A et al (2017) The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 11:2871–2890

    Google Scholar 

  • Kanavi MR et al (2018) Gamma irradiation of ocular melanoma and lymphoma cells in the presence of gold nanoparticles: in vitro study. J Appl Clin Med Phys 19(3):268–275

    Google Scholar 

  • Kim TY et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716

    Google Scholar 

  • Kim B, Tripp S, Wei A (2011) Tuning the optical properties of large gold nanoparticle arrays. Mater Res Soc Symp Proc 61:676

    Google Scholar 

  • Kim CH et al (2014) Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO). Int J Cancer 135(8):1918–1930

    Google Scholar 

  • Kirchner C et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Google Scholar 

  • Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2(1):1–10

    Google Scholar 

  • Kondiah P et al (2018) Nanocomposites for therapeutic application in multiple sclerosis. In: Inamuddin A, Asiri A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, pp 391–408

    Google Scholar 

  • Kong I (2016) Polymers with nano-encapsulated functional polymers. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Micro and nano technologies: design and applications of nanostructured polymer blends and nanocomposite systems. William Andrew Publishing, pp 125–154

    Google Scholar 

  • Korchinski DJ et al (2015) Iron oxide as an MRI contrast agent for cell tracking. Magn Reson Insights 8(Suppl 1):15–29

    Google Scholar 

  • Kurup A, Hanna NH (2004) Treatment of small cell lung cancer. Crit Rev Oncol Hematol 52(2):117–126

    Google Scholar 

  • Lee CC et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Google Scholar 

  • Lee CC et al (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A 103(45):16649–16654

    Google Scholar 

  • Liu Z et al (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Google Scholar 

  • Liu J et al (2010) Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomedicine 6:59–69

    Google Scholar 

  • Liu J et al (2019) Zwitterionic gadolinium(III)-complexed dendrimer-entrapped gold nanoparticles for enhanced computed tomography/magnetic resonance imaging of lung cancer metastasis. ACS Appl Mater Interfaces 11(17):15212–15221

    Google Scholar 

  • Lutfullin M, Sinatra L, Bakr O (2020) Quantum dots for electronics and energy applications. [cited 2020 21/12/20]. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/quantum-dots-noncadmium.html

  • Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4(2):1000164

    Google Scholar 

  • Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1-2):271–284

    Google Scholar 

  • Majidi S et al (2016) Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol 44(2):722–734

    Google Scholar 

  • Malekzad H et al (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6(3):301–329

    Google Scholar 

  • Malhotra J et al (2016) Risk factors for lung cancer worldwide. Eur Respir J 48(3):889–902

    Google Scholar 

  • Mandal AK (2021) Dendrimers in targeted drug delivery applications: a review of diseases and cancer. Int J Polym Mater Polym Biomater 70(4):287–297

    Google Scholar 

  • Markman M (2020) Lung cancer stages. [cited 2020 17/11/20]. https://www.cancercenter.com/cancer-types/lung-cancer/stages#:~:text=Stage%20IV%20non%2Dsmall%20cell,they%20are%20in%20stage%20IV

  • Mascaux C et al (2017) Personalised medicine for nonsmall cell lung cancer. Eur Respir Rev 26(146):170066

    Google Scholar 

  • Matsui K et al (2006) Relapse of stage I small cell lung cancer ten or more years after the start of treatment. Jpn J Clin Oncol 36(7):457–461

    Google Scholar 

  • Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15(19–20):842–850

    Google Scholar 

  • Miyoshi T et al (2016) Risk factors associated with cisplatin-induced nephrotoxicity in patients with advanced lung cancer. Biol Pharm Bull 39(12):2009–2014

    Google Scholar 

  • Mo R et al (2012) Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24(27):3659–3665

    Google Scholar 

  • Molina JR et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594

    Google Scholar 

  • Nanowerk (2020) What are quantum dots? [cited 2020 21/12]. https://www.nanowerk.com/what_are_quantum_dots.php#:~:text=Quantum%20dots%20(QDs)%20are%20man,cells%20and%20fluorescent%20biological%20labels

  • National Health Service (2019) Lung cancer. [cited 2020 16/11]. https://www.nhs.uk/conditions/lung-cancer/

  • National Health Surface (2019) Lung cancer—treatment. [cited 2020 14/12]. https://www.nhs.uk/conditions/lung-cancer/treatment/

  • Navani N et al (2015) Lung cancer diagnosis and staging with endobronchial ultrasound-guided transbronchial needle aspiration compared with conventional approaches: an open-label, pragmatic, randomised controlled trial. Lancet Respir Med 3(4):282–289

    Google Scholar 

  • Norouzi M, Hardy P (2021) Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 121:134–142

    Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Google Scholar 

  • Patil M, Mehta DS, Guvva S (2008) Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 12(2):34–40

    Google Scholar 

  • PDQ® Adult Treatment Editorial Board (2020) Small cell lung cancer treatment. [cited 2020 17/12]. https://www.cancer.gov/types/lung/hp/small-cell-lung-treatment-pdq#_72

  • Peng G et al (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    Google Scholar 

  • Periyasamy P et al (2012) Nanomaterials for the local and targeted delivery of osteoarthritis drugs. J Nanomater 6:1–13

    Google Scholar 

  • Pesch B et al (2012) NOTCH1, HIF1A and other cancer-related proteins in lung tissue from uranium miners—variation by occupational exposure and subtype of lung cancer. PLoS One 7(9):e45305

    Google Scholar 

  • Poonia M et al (2017) Nanotechnology in oral cancer: a comprehensive review. J Oral Maxillofac Pathol 21(3):407–414

    Google Scholar 

  • Qian X et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90

    Google Scholar 

  • Rahman G et al (2019) An overview of the recent progress in the synthesis and applications of carbon nanotubes. C 5:1–31

    MathSciNet  Google Scholar 

  • Rana S et al (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64(2):200–216

    Google Scholar 

  • Rancoule C et al (2016) Nanoparticles in radiation oncology: from bench-side to bedside. Cancer Lett 375(2):256–262

    Google Scholar 

  • Rosenberger I et al (2015) Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release 214:76–84

    Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171

    Google Scholar 

  • Saito M et al (2018) Development of targeted therapy and immunotherapy for treatment of small cell lung cancer. Jpn J Clin Oncol 48(7):603–608

    MathSciNet  Google Scholar 

  • Sajja HK et al (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6(1):43–51

    Google Scholar 

  • Sarkar S et al (2017) Advances and implications in nanotechnology for lung cancer management. Curr Drug Metab 18(1):30–38

    MathSciNet  Google Scholar 

  • Sasaki H et al (2014) Prognosis of recurrent non-small cell lung cancer following complete resection. Oncol Lett 7(4):1300–1304

    Google Scholar 

  • Scher N et al (2020) Review of clinical applications of radiation-enhancing nanoparticles. Biotechnol Rep (Amst) 28:e00548

    Google Scholar 

  • Shah P (2006) Clinical consideration in lung cancer. In: Desai SR (ed) Lung cancer. Cambridge University Press, Cambridge, pp 1–11

    Google Scholar 

  • Shahri M (2019) Magnetic materials and magnetic nanocomposites for biomedical application. In: Henry D (ed) Harnessing nanoscale surface interactions. Elsevier, pp 77–95

    Google Scholar 

  • Sharma A, Sharma U (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Google Scholar 

  • Shirish G, Suresh R, Gregory K (2012) Treatment of lung cancer. Radiol Clin North Am 50(5):961–974

    Google Scholar 

  • Sigma Aldrich (2020) Gold nanoparticles: properties and applications. [cited 2020 23/12]. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html

  • Silvestri GA et al (2013) Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e211S–e250S

    Google Scholar 

  • Smith AM, Nie S (2009) Next-generation quantum dots. Nat Biotechnol 27(8):732–733

    Google Scholar 

  • Socinski MA et al (2013) Treatment of stage IV non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e341S–e368S

    Google Scholar 

  • Stathopoulos GP et al (2010) Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol 21(11):2227–2232

    Google Scholar 

  • Stathopoulos GP et al (2011) Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 68(4):945–950

    Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129

    Google Scholar 

  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B (2019) Gold nanoparticles in cancer treatment. Mol Pharm 16(1):1–23

    Google Scholar 

  • Ta VT et al (2014) Reusable floating-electrode sensor for the quantitative electrophysiological monitoring of a nonadherent cell. ACS Nano 8(3):2206–2213

    Google Scholar 

  • Tay ZW et al (2018) In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 8(13):3676–3687

    Google Scholar 

  • Thakur S et al (2015) Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer 59:67–92

    Google Scholar 

  • The American Cancer Society medical and editorial content team (2019a) Signs and symptoms of lung cancer. [cited 2020 17/11]. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/signs-symptoms.html

  • The American Cancer Society medical and editorial content team (2019b) What is lung cancer? [cited 2020 16/11]. https://www.cancer.org/cancer/lung-cancer/about/what-is.html

  • The American Cancer Society medical and editorial content team (2020) Immunotherapy for non-small cell lung cancer. [cited 2020 14/12]. https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/immunotherapy.html

  • Tong L et al (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141

    Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Google Scholar 

  • Travis WD (2014) The 2015 WHO classification of lung tumors. Pathologe 35(Suppl 2):188

    Google Scholar 

  • Uramoto H, Tanaka F (2014) Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res 3(4):242–249

    Google Scholar 

  • Wan X et al (2016) The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging. Carbohydr Res 419:33–40

    Google Scholar 

  • Wang AZ, Tepper JE (2014) Nanotechnology in radiation oncology. J Clin Oncol 32(26):2879–2885

    Google Scholar 

  • Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6(1):9–26

    Google Scholar 

  • Wang X et al (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110

    Google Scholar 

  • Wang Y et al (2012) Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine 7:2315–2324

    Google Scholar 

  • Wang C et al (2013) Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. J Nanopart Res 15(5):1642

    Google Scholar 

  • Wawrzynczak A, Feliczak-Guzik A, Nowak I (2016) Nanosunscreens: from nanoencapsulated to nanosized cosmetic active forms. In: Grumezescu A (ed) Nanobiomaterials in galenic formulations and cosmetics. William Andrew Publishing, pp 25–46

    Google Scholar 

  • WebMD (2020) Small-cell lung cancer. [cited 2020 17/12]. https://www.webmd.com/lung-cancer/small-cell-lung-cancer#1

  • Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171

    Google Scholar 

  • Werner ME et al (2013) Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 86(3):463–468

    Google Scholar 

  • Willow J (2020) Stage 3 lung cancer: prognosis, life expectancy, treatment, and more. [cited 2020 14/12]. https://www.healthline.com/health/lung-cancer/stage-3-symptoms-outlook#:~:text=Stage%203%20lung%20cancer%20treatment,not%20indicated%20for%20stage%203B

  • Wilson CM et al (2015) The ins and outs of nanoparticle technology in neurodegenerative diseases and cancer. Curr Drug Metab 16(8):609–632

    Google Scholar 

  • Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055

    Google Scholar 

  • Woodman C et al (2021) Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 69:349–364

    Google Scholar 

  • Xu B et al (2018) Meta-analysis of clinical trials comparing the efficacy and safety of liposomal cisplatin versus conventional nonliposomal cisplatin in nonsmall cell lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (SCCHN). Medicine (Baltimore) 97(46):e13169

    Google Scholar 

  • Yang F et al (2008) Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses 70(4):765–767

    Google Scholar 

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Google Scholar 

  • Yin Q et al (2019) Excitation-wavelength and size-dependent photo-darkening and photo-brightening of photoluminescence from PbS quantum dots in glasses. Opt Mater Express 9(2):504–515

    Google Scholar 

  • Yu KH et al (2016) Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 7:12474

    Google Scholar 

  • Yue X, Dai Z (2018) Liposomal nanotechnology for cancer theranostics. Curr Med Chem 25(12):1397–1408

    Google Scholar 

  • Zahednezhad F et al (2020) The latest advances of cisplatin liposomal formulations: essentials for preparation and analysis. Expert Opin Drug Deliv 17(4):523–541

    Google Scholar 

  • Zhang Y, He J (2013) The development of targeted therapy in small cell lung cancer. J Thorac Dis 5(4):538–548

    Google Scholar 

  • ZieliÅ„ska A et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16):3731

    Google Scholar 

  • Ziemer LS et al (2005) Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J Appl Physiol (1985) 98(4):1503–1510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holder, J.E., Al-Yozbaki, M., Wilson, C.M. (2022). The Role of Nanotechnology for Diagnostic and Therapy Strategies in Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_342

Download citation

  • DOI: https://doi.org/10.1007/174_2022_342

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics