Skip to main content

Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 322 Accesses

Abstract

Per 2021 American Cancer Society estimates, lung cancer has the second highest incidence and highest mortality of all malignancies in the United States. Outcomes have improved considerably over the past decade, with radiation therapy (RT) serving as a cornerstone of locoregional therapy. The technical challenges of delivering biologically effective doses of RT capable of achieving local control include accurate target definition and accounting for respiratory tumor motion, tissue heterogeneities, and normal tissue tolerance. Three-dimensional conformal radiation therapy (3D CRT) is now the minimum technical standard for treating NSCLC. Intensity-modulated radiation therapy (IMRT) and volumetrically modulated radiation therapy (VMAT), in addition to four-dimensional (4D) CT simulation and planning techniques, biological targeting via positron emission tomography (PET), and 2D and 3D image-guided delivery methods, have facilitated radiation dose escalation while respecting normal tissue tolerance of organs at risk (OAR). In patients with locally advanced disease, IMRT has demonstrated improved dosimetric and toxicity profiles when compared to 3D CRT. However, this comes at the cost of long treatment times and high integral dose. With improvements in commercial planning software and quality assurance measures, VMAT is now commonly employed to achieve the improved conformality found with IMRT along with shorter treatment times and fewer monitor units delivered. Though no randomized trials comparing 3D CRT to IMRT/VMAT have been performed, these advanced modalities should be strongly considered in patients with locally advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the purposes of this chapter, the abbreviation “IMRT” by default will henceforth refer only to fixed-field IMRT, whereby intensity-modulated beams are delivered from multiple discrete, fixed angles (using segmental or dynamic MLCs) without any gantry rotation during beam-on time, thus excluding techniques such as tomotherapy, IMAT, and VMAT. The unabbreviated term “intensity-modulated radiation therapy” may, however, confer a broader connotation.

  2. 2.

    Notably, distinctions for IMAT and VMAT are not universally agreed upon. The term “arc therapy” will refer both to IMAT and VMAT. As the term “VMAT” corresponds to technological advances of IMAT, Yu et al. refer to VMAT expressly as IMAT. Further, VMAT technology has been trademarked with Elekta (VMAT™), Varian (RapidArc™), and Philips (SmartArc™) and has also been referred to as “arc-modulated radiation therapy” (AMRT). Henceforth, the terms “volumetric modulated arc therapy” and “VMAT” will refer generically to the advanced IMAT technology inclusive of variable gantry velocity and variable dose rate and exclusive of arc therapy delivered with uniform dose rate and uniform gantry velocity, which will be referred to as intensity-modulated arc therapy or “IMAT.” Furthermore, tomotherapy will be considered as its own modality (not to be incorporated by default with the terms “IMRT,” “arc therapy,” “IMAT,” or “VMAT”).

References

  • Al-Halabi H, Paetzold P, Sharp GC, Olsen C, Willers H (2015) A Contralateral esophagus-sparing technique to limit severe esophagitis associated with concurrent high-dose radiation and chemotherapy in patients with thoracic malignancies. Int J Radiat Oncol Biol Phys 92(4):803–810

    Google Scholar 

  • Armstrong JG, Minsky BD (1989) Radiation therapy for medically inoperable stage I and II non-small cell lung cancer. Cancer Treat Rev 16(4):247–255

    Google Scholar 

  • ASTRO (2019) Model policies. Intensity Modulated Radiation Therapy (IMRT). https://www.astro.org/ASTRO/media/ASTRO/Daily%20Practice/PDFs/IMRTMP.pdf. Accessed 23 Feb 2021

  • Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, Kozono DE, Baldini EH, Chen AB, Nguyen PL, D’Amico AV, Nohria A, Hoffmann U, Aerts H, Mak RH (2019) Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol 73(23):2976–2987

    Google Scholar 

  • Atkins KM, Chaunzwa TL, Lamba N, Bitterman DS, Rawal B, Bredfeldt J, Williams CL, Kozono DE, Baldini EH, Nohria A, Hoffmann U, Aerts H, Mak RH (2021) Association of left anterior descending coronary artery radiation dose with major adverse cardiac events and mortality in patients with non-small cell lung cancer. JAMA Oncol 7:206

    Google Scholar 

  • Bedford JL, Warrington AP (2009) Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys 73(2):537–545

    Google Scholar 

  • Bertelsen A, Hansen O, Brink C (2012) Does VMAT for treatment of NSCLC patients increase the risk of pneumonitis compared to IMRT? - a planning study. Acta Oncol 51(6):752–758

    Google Scholar 

  • Bortfeld T (2006) IMRT: a review and preview. Phys Med Biol 51(13):R363–R379

    Google Scholar 

  • Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86

    Google Scholar 

  • Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B (2005) Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61(2):318–328

    Google Scholar 

  • Bradley JD, Bae K, Graham MV, Byhardt R, Govindan R, Fowler J, Purdy JA, Michalski JM, Gore E, Choy H (2010) Primary analysis of the phase II component of a phase I/II dose intensification study using three-dimensional conformal radiation therapy and concurrent chemotherapy for patients with inoperable non-small-cell lung cancer: RTOG 0117. J Clin Oncol 28(14):2475–2480

    Google Scholar 

  • Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, Purdy J, Faria S, Vu T, Thorstad W, Choy H (2012) A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 82(1):435–441 e431

    Google Scholar 

  • Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, Kavadi V, Garces YI, Narayan S, Iyengar P, Robinson C, Wynn RB, Koprowski C, Meng J, Beitler J, Gaur R, Curran W Jr, Choy H (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Google Scholar 

  • Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, Bogart JA, Forster KM, Magliocco AM, Kavadi VS, Narayan S, Iyengar P, Robinson CG, Wynn RB, Koprowski CD, Olson MR, Meng J, Paulus R, Curran WJ Jr, Choy H (2020) Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol 38(7):706–714

    Google Scholar 

  • Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12(2):129–140

    Google Scholar 

  • Bral S, Duchateau M, Versmessen H, Engels B, Tournel K, Vinh-Hung V, De Ridder M, Schallier D, Storme G (2010) Toxicity and outcome results of a class solution with moderately hypofractionated radiotherapy in inoperable Stage III non-small cell lung cancer using helical tomotherapy. Int J Radiat Oncol Biol Phys 77(5):1352–1359

    Google Scholar 

  • Byhardt RW, Scott CB, Ettinger DS, Curran WJ, Doggett RL, Coughlin C, Scarantino C, Rotman M, Emami B (1995) Concurrent hyperfractionated irradiation and chemotherapy for unresectable nonsmall cell lung cancer. Results of Radiation Therapy Oncology Group 90-15. Cancer 75(9):2337–2344

    Google Scholar 

  • Cao D, Holmes TW, Afghan MK, Shepard DM (2007) Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 69(1):240–250

    Google Scholar 

  • Cao D, Afghan MK, Ye J, Chen F, Shepard DM (2009) A generalized inverse planning tool for volumetric-modulated arc therapy. Phys Med Biol 54(21):6725–6738

    Google Scholar 

  • Chan C, Lang S, Rowbottom C, Guckenberger M, Faivre-Finn C, Committee IART (2014) Intensity-modulated radiotherapy for lung cancer: current status and future developments. J Thorac Oncol 9(11):1598–1608

    Google Scholar 

  • Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, Groen HJ, McRae SE, Widder J, Feng L, van den Borne BE, Munsell MF, Hurkmans C, Berry DA, van Werkhoven E, Kresl JJ, Dingemans AM, Dawood O, Haasbeek CJ, Carpenter LS, De Jaeger K, Komaki R, Slotman BJ, Smit EF, Roth JA (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16(6):630–637

    Google Scholar 

  • Chapet O, Thomas E, Kessler ML, Fraass BA, Ten Haken RK (2005) Esophagus sparing with IMRT in lung tumor irradiation: an EUD-based optimization technique. Int J Radiat Oncol Biol Phys 63(1):179–187

    Google Scholar 

  • Chapet O, Fraass BA, Ten Haken RK (2006) Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors. Int J Radiat Oncol Biol Phys 65(1):255–265

    Google Scholar 

  • Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, Bogart JA, Dobelbower MC, Bosch W, Galvin JM, Kavadi VS, Narayan S, Iyengar P, Robinson CG, Wynn RB, Raben A, Augspurger ME, MacRae RM, Paulus R, Bradley JD (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 35(1):56–62

    Google Scholar 

  • Clark GM, Popple RA, Young PE, Fiveash JB (2010) Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys 76(1):296–302

    Google Scholar 

  • Craft D, Halabi T, Shih HA, Bortfeld T (2007) An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys 69(5):1600–1607

    Google Scholar 

  • Curran WJ Jr, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, Movsas B, Wasserman T, Rosenthal SA, Gore E, Machtay M, Sause W, Cox JD (2011) Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst 103(19):1452–1460

    Google Scholar 

  • Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, Murthy VL, Hearn JWD, Kong FM, Kalemkerian GP, Hayman JA, Ten Haken RK, Lawrence TS, Schipper MJ, Jolly S (2017) Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol 35(13):1395–1402

    Google Scholar 

  • Dess RT, Sun Y, Muenz DG, Paximadis PA, Dominello MM, Grills IS, Kestin LL, Movsas B, Masi KJ, Matuszak MM, Radawski JD, Moran JM, Pierce LJ, Hayman JA, Schipper MJ, Jolly S, Michigan Radiation Oncology Quality C (2020) Cardiac dose in locally advanced lung cancer: results from a statewide consortium. Pract Radiat Oncol 10(1):e27–e36

    Google Scholar 

  • Dosoretz DE, Katin MJ, Blitzer PH, Rubenstein JH, Salenius S, Rashid M, Dosani RA, Mestas G, Siegel AD, Chadha TT et al (1992) Radiation therapy in the management of medically inoperable carcinoma of the lung: results and implications for future treatment strategies. Int J Radiat Oncol Biol Phys 24(1):3–9

    Google Scholar 

  • Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL (1999) Metastases from non-small cell lung cancer: mediastinal staging in the 1990s--meta-analytic comparison of PET and CT. Radiology 213(2):530–536

    Google Scholar 

  • Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, Humm JL, Squire OD, Chui CS, Larson SM, Yorke ED (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62(1):51–60

    Google Scholar 

  • Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX, Subcommittee I, Committee ART (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30(8):2089–2115

    Google Scholar 

  • Fang LC, Komaki R, Allen P, Guerrero T, Mohan R, Cox JD (2006) Comparison of outcomes for patients with medically inoperable Stage I non-small-cell lung cancer treated with two-dimensional vs. three-dimensional radiotherapy. Int J Radiat Oncol Biol Phys 66(1):108–116

    Google Scholar 

  • Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D (2005) Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61(5):1355–1363

    Google Scholar 

  • Giraud P, Grahek D, Montravers F, Carette MF, Deniaud-Alexandre E, Julia F, Rosenwald JC, Cosset JM, Talbot JN, Housset M, Touboul E (2001) CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49(5):1249–1257

    Google Scholar 

  • Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, Wiener RS (2013) Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e93S–e120S

    Google Scholar 

  • Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57(3):875–890

    Google Scholar 

  • Grills IS, Fitch DL, Goldstein NS, Yan D, Chmielewski GW, Welsh RJ, Kestin LL (2007) Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys 69(2):334–341

    Google Scholar 

  • Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, Wloch J, Ye H, Kestin LL (2010) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28(6):928–935

    Google Scholar 

  • Grills IS, Hope AJ, Guckenberger M, Kestin LL, Werner-Wasik M, Yan D, Sonke JJ, Bissonnette JP, Wilbert J, Xiao Y, Belderbos J (2012) A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. J Thorac Oncol 7(9):1382–1393

    Google Scholar 

  • Guckenberger M, Richter A, Krieger T, Wilbert J, Baier K, Flentje M (2009) Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 93(2):259–265

    Google Scholar 

  • Harsolia A, Hugo GD, Kestin LL, Grills IS, Yan D (2008) Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70(2):582–589

    Google Scholar 

  • Hayman JA, Martel MK, Ten Haken RK, Normolle DP, Todd RF III, Littles JF, Sullivan MA, Possert PW, Turrisi AT, Lichter AS (2001) Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19(1):127–136

    Google Scholar 

  • Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EM (2011) Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys 81(5):1560–1567

    Google Scholar 

  • Hugo GD, Yan D, Liang J (2007a) Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol 52(1):257–274

    Google Scholar 

  • Hugo GD, Liang J, Campbell J, Yan D (2007b) On-line target position localization in the presence of respiration: a comparison of two methods. Int J Radiat Oncol Biol Phys 69(5):1634–1641

    Google Scholar 

  • Jiang X, Li T, Liu Y, Zhou L, Xu Y, Zhou X, Gong Y (2011) Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat Oncol 6:140

    Google Scholar 

  • Jiang ZQ, Yang K, Komaki R, Wei X, Tucker SL, Zhuang Y, Martel MK, Vedam S, Balter P, Zhu G, Gomez D, Lu C, Mohan R, Cox JD, Liao Z (2012) Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys 83(1):332–339

    Google Scholar 

  • Kamran SC, Yeap BY, Ulysse C, Cronin C, Bowes C, Durgin B, Khandekar MJ, Tansky JY, Keane FK, Olsen CC, Willers H (2020) Phase I trial of an IMRT-based contralateral esophagus sparing technique (CEST) in locally advanced NSCLC and SCLC treated to 70 Gy. Int J Radiat Oncol Biol Phys 108(3, Suppl):S104–S105

    Google Scholar 

  • Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C (1993) Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 27(3):517–523

    Google Scholar 

  • Kilburn JM, Soike MH, Lucas JT, Ayala-Peacock D, Blackstock W, Isom S, Kearns WT, Hinson WH, Miller AA, Petty WJ, Munley MT, Urbanic JJ (2016) Image guided radiation therapy may result in improved local control in locally advanced lung cancer patients. Pract Radiat Oncol 6(3):e73–e80

    Google Scholar 

  • Kong FM, Ten Haken RK, Schipper M, Frey KA, Hayman J, Gross M, Ramnath N, Hassan KA, Matuszak M, Ritter T, Bi N, Wang W, Orringer M, Cease KB, Lawrence TS, Kalemkerian GP (2017) Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol 3(10):1358–1365

    Google Scholar 

  • Kwint M, Conijn S, Schaake E, Knegjens J, Rossi M, Remeijer P, Sonke JJ, Belderbos J (2014) Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother Oncol 113(3):392–397

    Google Scholar 

  • Lee JS, Scott C, Komaki R, Fossella FV, Dundas GS, McDonald S, Byhardt RW, Curran WJ Jr (1996) Concurrent chemoradiation therapy with oral etoposide and cisplatin for locally advanced inoperable non-small-cell lung cancer: radiation therapy oncology group protocol 91-06. J Clin Oncol 14(4):1055–1064

    Google Scholar 

  • Lievens Y, Nulens A, Gaber MA, Defraene G, De Wever W, Stroobants S, Van den Heuvel F, Leuven Lung Cancer G (2011) Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study. Int J Radiat Oncol Biol Phys 80(1):306–313

    Google Scholar 

  • Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, Guerrero TM, Komaki R, Cox JD, Mohan R (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58(4):1268–1279

    Google Scholar 

  • Liu HH, Jauregui M, Zhang X, Wang X, Dong L, Mohan R (2006) Beam angle optimization and reduction for intensity-modulated radiation therapy of non-small-cell lung cancers. Int J Radiat Oncol Biol Phys 65(2):561–572

    Google Scholar 

  • Luan S, Wang C, Cao D, Chen DZ, Shepard DM, Yu CX (2008) Leaf-sequencing for intensity-modulated arc therapy using graph algorithms. Med Phys 35(1):61–69

    Google Scholar 

  • Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE, Tirona R (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52(2):339–350

    Google Scholar 

  • Matuszak MM, Yan D, Grills I, Martinez A (2010) Clinical applications of volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 77(2):608–616

    Google Scholar 

  • McDermott PN, Orton CG (2018) The physics and technology of radiation therapy, 2nd edn. Medical Physics Publishing, Madison, WI

    Google Scholar 

  • McGrath SD, Matuszak MM, Yan D, Kestin LL, Martinez AA, Grills IS (2010) Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: a dosimetric and treatment efficiency analysis. Radiother Oncol 95(2):153–157

    Google Scholar 

  • Mohammed N, Kestin LL, Grills IS, Battu M, Fitch DL, Wong CY, Margolis JH, Chmielewski GW, Welsh RJ (2011a) Rapid disease progression with delay in treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 79(2):466–472

    Google Scholar 

  • Mohammed N, Grills IS, Wong CY, Galerani AP, Chao K, Welsh R, Chmielewski G, Yan D, Kestin LL (2011b) Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors. Radiother Oncol 99(1):18–22

    Google Scholar 

  • Movsas B, Hu C, Sloan J, Bradley J, Komaki R, Masters G, Kavadi V, Narayan S, Michalski J, Johnson DW, Koprowski C, Curran WJ Jr, Garces YI, Gaur R, Wynn RB, Schallenkamp J, Gelblum DY, MacRae RM, Paulus R, Choy H (2016) Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer: a secondary analysis of the radiation therapy oncology group 0617 randomized clinical trial. JAMA Oncol 2(3):359–367

    Google Scholar 

  • Murshed H, Liu HH, Liao Z, Barker JL, Wang X, Tucker SL, Chandra A, Guerrero T, Stevens C, Chang JY, Jeter M, Cox JD, Komaki R, Mohan R (2004) Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58(4):1258–1267

    Google Scholar 

  • Ong CL, Verbakel WF, Cuijpers JP, Slotman BJ, Lagerwaard FJ, Senan S (2010) Stereotactic radiotherapy for peripheral lung tumors: a comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiother Oncol 97(3):437–442

    Google Scholar 

  • Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, Yamashita T, Niibe Y, Karasawa K, Hayakawa K, Takai Y, Kimura T, Hirokawa Y, Takeda A, Ouchi A, Hareyama M, Kokubo M, Hara R, Itami J, Yamada K (2004) Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multi-institutional study. Cancer 101(7):1623–1631

    Google Scholar 

  • Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Google Scholar 

  • Palma DA, Senan S, Oberije C, Belderbos J, de Dios NR, Bradley JD, Barriger RB, Moreno-Jimenez M, Kim TH, Ramella S, Everitt S, Rengan R, Marks LB, De Ruyck K, Warner A, Rodrigues G (2013) Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 87(4):690–696

    Google Scholar 

  • Perez CA, Stanley K, Rubin P, Kramer S, Brady LW, Marks JE, Perez-Tamayo R, Brown GS, Concannon JP, Rotman M (1980) Patterns of tumor recurrence after definitive irradiation for inoperable non-oat cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 6(8):987–994

    Google Scholar 

  • Ramsey CR, Spencer KM, Alhakeem R, Oliver AL (2001) Leaf position error during conformal dynamic arc and intensity modulated arc treatments. Med Phys 28(1):67–72

    Google Scholar 

  • Rosenzweig KE, Fox JL, Yorke E, Amols H, Jackson A, Rusch V, Kris MG, Ling CC, Leibel SA (2005) Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer 103(10):2118–2127

    Google Scholar 

  • Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI (2007) Incidence of radiation pneumonitis after thoracic irradiation: dose-volume correlates. Int J Radiat Oncol Biol Phys 67(2):410–416

    Google Scholar 

  • Schwarz M, Alber M, Lebesque JV, Mijnheer BJ, Damen EM (2005) Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 62(2):561–570

    Google Scholar 

  • Scorsetti M, Navarria P, Mancosu P, Alongi F, Castiglioni S, Cavina R, Cozzi L, Fogliata A, Pentimalli S, Tozzi A, Santoro A (2010) Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc. Radiat Oncol 5:94

    Google Scholar 

  • Scorsetti M, Navarria P, De Rose F, Ascolese A, Clerici E, Franzese C, Lobefalo F, Reggiori G, Mancosu P, Tomatis S, Fogliata A, Cozzi L (2014) Outcome and toxicity profiles in the treatment of locally advanced lung cancer with volumetric modulated arc therapy. J Cancer Res Clin Oncol 140(11):1937–1945

    Google Scholar 

  • Shi A, Zhu G, Wu H, Yu R, Li F, Xu B (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 5:35

    Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Google Scholar 

  • Speirs CK, DeWees TA, Rehman S, Molotievschi A, Velez MA, Mullen D, Fergus S, Trovo M, Bradley JD, Robinson CG (2017) Heart dose is an independent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J Thorac Oncol 12(2):293–301

    Google Scholar 

  • Sura S, Gupta V, Yorke E, Jackson A, Amols H, Rosenzweig KE (2008) Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol 87(1):17–23

    Google Scholar 

  • Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Google Scholar 

  • Timmerman RD, Hu C, Michalski JM, Bradley JC, Galvin J, Johnstone DW, Choy H (2018a) Long-term results of stereotactic body radiation therapy in medically inoperable stage I non-small cell lung cancer. JAMA Oncol 4(9):1287–1288

    Google Scholar 

  • Timmerman RD, Paulus R, Pass HI, Gore EM, Edelman MJ, Galvin J, Straube WL, Nedzi LA, McGarry RC, Robinson CG, Schiff PB, Chang G, Loo BW Jr, Bradley JD, Choy H (2018b) Stereotactic body radiation therapy for operable early-stage lung cancer: findings from the NRG oncology RTOG 0618 trial. JAMA Oncol 4(9):1263–1266

    Google Scholar 

  • Vinogradskiy Y, Rusthoven CG, Schubert L, Jones B, Faught A, Castillo R, Castillo E, Gaspar LE, Kwak J, Waxweiler T, Dougherty M, Gao D, Stevens C, Miften M, Kavanagh B, Guerrero T, Grills I (2018) Interim analysis of a two-institution, prospective clinical trial of 4DCT-ventilation-based functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys 102(4):1357–1365

    Google Scholar 

  • Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, Mohan R, Cox JD, Komaki R (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66(5):1399–1407

    Google Scholar 

  • Wang C, Luan S, Tang G, Chen DZ, Earl MA, Yu CX (2008) Arc-modulated radiation therapy (AMRT): a single-arc form of intensity-modulated arc therapy. Phys Med Biol 53(22):6291–6303

    Google Scholar 

  • Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, Mavroidis P, Lee CB, Jensen BC, Rosenman JG, Socinski MA, Stinchcombe TE, Marks LB (2017) Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol 35(13):1387–1394

    Google Scholar 

  • Weyh A, Konski A, Nalichowski A, Maier J, Lack D (2013) Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMR. J Appl Clin Med Phys 14(4):4065

    Google Scholar 

  • Willner J, Jost A, Baier K, Flentje M (2003) A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy. Strahlenther Onkol 179(8):548–556

    Google Scholar 

  • Wolff D, Stieler F, Welzel G, Lorenz F, Abo-Madyan Y, Mai S, Herskind C, Polednik M, Steil V, Wenz F, Lohr F (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233

    Google Scholar 

  • Wong CY, Schmidt J, Bong JS, Chundru S, Kestin L, Yan D, Grills I, Gaskill M, Cheng V, Martinez AA, Fink-Bennett D (2007) Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging. Radiat Oncol 2:18

    Google Scholar 

  • Wulf J, Baier K, Mueller G, Flentje MP (2005) Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol 77(1):83–87

    Google Scholar 

  • Yom SS, Liao Z, Liu HH, Tucker SL, Hu CS, Wei X, Wang X, Wang S, Mohan R, Cox JD, Komaki R (2007) Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68(1):94–102

    Google Scholar 

  • Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC (2005) Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 63(3):672–682

    Google Scholar 

  • Yu CX (1995) Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 40(9):1435–1449

    Google Scholar 

  • Yu CX, Tang G (2011) Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 56(5):R31–R54

    Google Scholar 

  • Yu CX, Symons MJ, Du MN, Martinez AA, Wong JW (1995) A method for implementing dynamic photon beam intensity modulation using independent jaws and a multileaf collimator. Phys Med Biol 40(5):769–787

    Google Scholar 

  • Zhang P, Hugo GD, Yan D (2008) Planning study comparison of real-time target tracking and four-dimensional inverse planning for managing patient respiratory motion. Int J Radiat Oncol Biol Phys 72(4):1221–1227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga S. Grills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parzen, J.S., Grills, I.S. (2022). Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_340

Download citation

  • DOI: https://doi.org/10.1007/174_2022_340

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics