Skip to main content

Radiation Therapy-Induced Lung and Heart Toxicity

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 326 Accesses

Abstract

Radiation therapy is an essential treatment modality for the treatment of thoracic malignancies and plays a crucial role in the treatment of both non-small cell (NSCLC) and small cell lung cancer (SCLC). In lung cancer patients, radiation therapy is used as a curative-intent treatment for nonmetastatic disease, with or without other modalities such as surgery and systemic therapies. Radiation also plays a crucial role in the noncurative setting, improving quality of life and survival in the metastatic setting. The Cancer Treatment & Survivorship Facts & Figures (2019–2021) by the American Cancer Society has shown that 31% of patients with stage I–II non-small cell lung cancer, 53% of patients with stage III NSCLC, and 41% of patients with stage IV NSCLC receive radiation therapy to the chest either as a single modality or combined with surgery and/or systemic therapy (Miller et al. 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abratt RP et al (2004) Pulmonary complications of radiation therapy. Clin Chest Med 25(1):167–177

    Google Scholar 

  • Akulevich NM et al (2009) Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr Relat Cancer 16(2):491–503

    Google Scholar 

  • Alite F et al (2016) Local control dependence on consecutive vs. nonconsecutive fractionation in lung stereotactic body radiation therapy. Radiother Oncol 121(1):9–14

    Google Scholar 

  • Amin NP et al (2013) Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky non-small cell lung cancer. Med Dosim 38(3):320–326

    MathSciNet  Google Scholar 

  • Antonia SJ et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929

    Google Scholar 

  • Antonia SJ et al (2018) Overall survival with Durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379(24):2342–2350

    Google Scholar 

  • Arroyo-Hernández M et al (2021) Radiation-induced lung injury: current evidence. BMC Pulm Med 21(1):9

    Google Scholar 

  • Atkins KM et al (2019) Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol 73(23):2976–2987

    Google Scholar 

  • Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60

    Google Scholar 

  • Bentzen SM et al (2010) Quantitative analyses of Normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(Suppl. 3):S3–S9

    Google Scholar 

  • Benveniste MF et al (2019) Recognizing radiation therapy-related complications in the chest. Radiographics 39(2):344–366

    Google Scholar 

  • Blackstock AW et al (2001) Phase I study of twice-weekly gemcitabine and concurrent thoracic radiation for patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 51(5):1281–1289

    Google Scholar 

  • Bourhis J et al (2011) Effect of amifostine on survival among patients treated with radiotherapy: a meta-analysis of individual patient data. J Clin Oncol 29(18):2590–2597

    Google Scholar 

  • Bradley JD et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Google Scholar 

  • Briere TM et al (2016) Lung size and the risk of radiation pneumonitis. Int J Radiat Oncol Biol Phys 94(2):377–384

    Google Scholar 

  • Choi YW et al (2004) Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics 24(4):985–997. discussion 998

    Google Scholar 

  • Chun SG et al (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non-Small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol 35(1):56–62

    Google Scholar 

  • Citrin D et al (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    Google Scholar 

  • Dang J et al (2014) Risk and predictors for early radiation pneumonitis in patients with stage III non-small cell lung cancer treated with concurrent or sequential chemoradiotherapy. Radiat Oncol 9:172

    Google Scholar 

  • Dess RT et al (2017) Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol 35(13):1395–1402

    Google Scholar 

  • Ding X et al (2011) Radiation recall pneumonitis induced by chemotherapy after thoracic radiotherapy for lung cancer. Radiat Oncol 6:24

    Google Scholar 

  • Dziegielewski J et al (2008) WR-1065, the active metabolite of amifostine, mitigates radiation-induced delayed genomic instability. Free Radic Biol Med 45(12):1674–1681

    Google Scholar 

  • Fay M et al (2005) Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61(5):1355–1363

    Google Scholar 

  • Gagliardi G et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76(Suppl. 3):S77–S85

    Google Scholar 

  • Giuranno L et al (2019) Radiation-induced lung injury (RILI). Front Oncol 9:877

    Google Scholar 

  • Glick D et al (2018) Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival in patients treated with lung stereotactic body radiation therapy (SBRT). Clin Lung Cancer 19(2):e219–e226

    Google Scholar 

  • Gokula K, Earnest A, Wong LC (2013) Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas. Radiat Oncol 8:268

    Google Scholar 

  • Goodman CD et al (2020) A primer on interstitial lung disease and thoracic radiation. J Thorac Oncol 15(6):902–913

    Google Scholar 

  • Guberina M et al (2017) Heart dose exposure as prognostic marker after radiotherapy for resectable stage IIIA/B non-small-cell lung cancer: secondary analysis of a randomized trial. Ann Oncol 28(5):1084–1089

    Google Scholar 

  • Han S et al (2015) Analysis of clinical and Dosimetric factors influencing radiation-induced lung injury in patients with lung cancer. J Cancer 6(11):1172–1178

    Google Scholar 

  • Hanania AN et al (2019) Radiation-induced lung injury: assessment and management. Chest 156(1):150–162

    Google Scholar 

  • Harder EM et al (2016) Pulmonary dose-volume predictors of radiation pneumonitis following stereotactic body radiation therapy. Pract Radiat Oncol 6(6):e353–e359

    Google Scholar 

  • Henkenberens C et al (2016) Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy—a single-centre experience. Radiat Oncol 11:12

    Google Scholar 

  • Hernando ML et al (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51(3):650–659

    Google Scholar 

  • Hildebrandt MA et al (2010) Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer. PLoS One 5(8):e12402

    Google Scholar 

  • Hoover DA et al (2014) Functional lung avoidance for individualized radiotherapy (FLAIR): study protocol for a randomized, double-blind clinical trial. BMC Cancer 14:934

    Google Scholar 

  • Hufnagle JJ, Goyal A (2020) Radiation therapy induced cardiac toxicity. In: StatPearls. StatPearls Publishing, Treasure Island, FL. Copyright © 2020

    Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454

    Google Scholar 

  • Iyer, R. and A. Jhingran, Radiation injury: imaging findings in the chest, abdomen and pelvis after therapeutic radiation. Cancer Imaging, 2006; 6(Spec No A): S131–S139

    Google Scholar 

  • Jack CI et al (1996) Indicators of free radical activity in patients developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 34(1):149–154

    Google Scholar 

  • Jain V, Berman AT (2018) Radiation pneumonitis: old problem, new tricks. Cancers (Basel) 10(7):222

    Google Scholar 

  • Jin H et al (2009) Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother Oncol 91(3):427–432

    Google Scholar 

  • Kasper M, Haroske G (1996) Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11(2):463–483

    Google Scholar 

  • Kharofa J et al (2012) Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys 84(1):238–243

    Google Scholar 

  • Kim SR et al (2014) NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5(10):e1498

    Google Scholar 

  • Kong FM, Wang S (2015) Nondosimetric risk factors for radiation-induced lung toxicity. Semin Radiat Oncol 25(2):100–109

    Google Scholar 

  • Kong FS et al (2021, 110) Organs at risk considerations for thoracic stereotactic body radiation therapy: what is safe for lung parenchyma? Int J Radiat Oncol Biol Phys (1):172–187

    Google Scholar 

  • Koukourakis MI (2012) Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 85(1012):313–330

    Google Scholar 

  • Kouloulias V et al (2013) Suggestion for a new grading scale for radiation induced pneumonitis based on radiological findings of computerized tomography: correlation with clinical and radiotherapeutic parameters in lung cancer patients. Asian Pac J Cancer Prev 14(5):2717–2722

    Google Scholar 

  • Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12(6):738–747

    Google Scholar 

  • Lee SJ, Park HJ (2020) Single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging for radiotherapy planning in patients with lung cancer: a meta-analysis. Sci Rep 10(1):14864

    Google Scholar 

  • Levy A et al (2013) Targeted therapy-induced radiation recall. Eur J Cancer 49(7):1662–1668

    Google Scholar 

  • Li C et al (2017) Clinical characteristics and outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema: a systematic review and meta-analysis of 13 studies. J Thorac Dis 9(12):5322–5334

    Google Scholar 

  • Li F et al (2018) Preexisting radiological interstitial lung abnormalities are a risk factor for severe radiation pneumonitis in patients with small-cell lung cancer after thoracic radiation therapy. Radiat Oncol 13(1):82

    Google Scholar 

  • Linda A, Trovo M, Bradley JD (2011) Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: a timeline and pattern of CT changes. Eur J Radiol 79(1):147–154

    Google Scholar 

  • Liu X, Chen Z (2017) The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 15(1):207

    MathSciNet  Google Scholar 

  • Mao J et al (2007) The impact of induction chemotherapy and the associated tumor response on subsequent radiation-related changes in lung function and tumor response. Int J Radiat Oncol Biol Phys 67(5):1360–1369

    Google Scholar 

  • Marinko T (2018) Pericardial disease after breast cancer radiotherapy. Radiol Oncol 53(1):1–5

    MathSciNet  Google Scholar 

  • Marks LB et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(Suppl. 3):S70–S76

    Google Scholar 

  • Medhora M et al (2012) Radiation damage to the lung: mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology 17(1):66–71

    Google Scholar 

  • Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63(1):5–24

    Google Scholar 

  • Miller KD et al (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69(5):363–385

    Google Scholar 

  • Moeller BJ et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Google Scholar 

  • Monson JM et al (1998) Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 82(5):842–850

    Google Scholar 

  • Murley JS et al (2007) Manganese superoxide dismutase (SOD2)-mediated delayed radioprotection induced by the free thiol form of amifostine and tumor necrosis factor alpha. Radiat Res 167(4):465–474

    Google Scholar 

  • Ozawa Y et al (2015) Impact of preexisting interstitial lung disease on acute, extensive radiation pneumonitis: retrospective analysis of patients with lung cancer. PLoS One 10(10):e0140437

    Google Scholar 

  • Palma DA et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85(2):444–450

    Google Scholar 

  • Park YH, Kim JS (2013) Predictors of radiation pneumonitis and pulmonary function changes after concurrent chemoradiotherapy of non-small cell lung cancer. Radiat Oncol J 31(1):34–40

    Google Scholar 

  • Paumier A et al (2012) Dosimetric benefits of intensity-modulated radiotherapy combined with the deep-inspiration breath-hold technique in patients with mediastinal Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 82(4):1522–1527

    Google Scholar 

  • Prasanna PG et al (2012) Normal tissue protection for improving radiotherapy: where are the gaps? Transl Cancer Res 1(1):35–48

    Google Scholar 

  • Prezzano KM et al (2019) Stereotactic body radiation therapy for non-small cell lung cancer: a review. World J Clin Oncol 10(1):14–27

    Google Scholar 

  • Rancati T et al (2003) Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 67(3):275–283

    Google Scholar 

  • Robnett TJ et al (2000) Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 48(1):89–94

    Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Google Scholar 

  • Senzer N (2002) A phase III randomized evaluation of amifostine in stage IIIA/IIIB non-small cell lung cancer patients receiving concurrent carboplatin, paclitaxel, and radiation therapy followed by gemcitabine and cisplatin intensification: preliminary findings. Semin Oncol 29(6 Suppl. 19):38–41

    Google Scholar 

  • Seppenwoolde Y et al (2004) Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60(3):748–758

    Google Scholar 

  • Shaverdian N et al (2020) Radiation pneumonitis in lung cancer patients treated with chemoradiation plus durvalumab. Cancer Med 9(13):4622–4631

    Google Scholar 

  • Shields TW (1993) Surgical therapy for carcinoma of the lung. Clin Chest Med 14(1):121–147

    Google Scholar 

  • Sio TT et al (2019) Daily Lisinopril vs placebo for prevention of Chemoradiation-induced pulmonary distress in patients with lung cancer (Alliance MC1221): a pilot double-blind randomized trial. Int J Radiat Oncol Biol Phys 103(3):686–696

    Google Scholar 

  • Small W Jr et al (2018) Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer: results from NRG oncology RTOG 0123. Am J Clin Oncol 41(4):396–401

    Google Scholar 

  • Speirs CK et al (2017) Heart dose is an independent Dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J Thorac Oncol 12(2):293–301

    Google Scholar 

  • Tak JK, Park JW (2009) The use of ebselen for radioprotection in cultured cells and mice. Free Radic Biol Med 46(8):1177–1185

    Google Scholar 

  • Tembhekar AR, Wright CL, Daly ME (2017) Cardiac dose and survival after stereotactic body radiotherapy for early-stage non-small-cell lung cancer. Clin Lung Cancer 18(3):293–298

    Google Scholar 

  • Terasaki Y et al (2011) Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. Am J Physiol Lung Cell Mol Physiol 301(4):L415–L426

    Google Scholar 

  • Tian S et al (2020) Lung stereotactic body radiation therapy and concurrent immunotherapy: a multicenter safety and toxicity analysis. Int J Radiat Oncol Biol Phys 108(1):304–313

    Google Scholar 

  • Toi Y et al (2018) Association of immune-related adverse events with clinical benefit in patients with advanced non-Small-cell lung cancer treated with Nivolumab. Oncologist 23(11):1358–1365

    Google Scholar 

  • van der Veen SJ et al (2015) ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother Oncol 114(1):96–103

    Google Scholar 

  • van Sörnsen de Koste J et al (2001) An evaluation of two techniques for beam intensity modulation in patients irradiated for stage III non-small cell lung cancer. Lung Cancer 32(2):145–153

    Google Scholar 

  • Verma V et al (2017) Influence of fractionation scheme and tumor location on toxicities after stereotactic body radiation therapy for large (≥5 cm) non-Small cell lung cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys 97(4):778–785

    Google Scholar 

  • Verma V et al (2018a) Safety of combined immunotherapy and thoracic radiation therapy: analysis of 3 single-institutional phase I/II trials. Int J Radiat Oncol Biol Phys 101(5):1141–1148

    Google Scholar 

  • Verma V et al (2018b) Toxicity of radiation and immunotherapy combinations. Adv Radiat Oncol 3(4):506–511

    Google Scholar 

  • Vinogradskiy Y et al (2013) Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes. Int J Radiat Oncol Biol Phys 86(2):366–371

    Google Scholar 

  • Vogelius IR, Bentzen SM (2012) A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol 51(8):975–983

    Google Scholar 

  • Vojtíšek R (2020) Cardiac toxicity of lung cancer radiotherapy. Rep Pract Oncol Radiother 25(1):13–19

    Google Scholar 

  • Wang S et al (2017a) Plasma levels of IL-8 and TGF-β1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study. Int J Radiat Oncol Biol Phys 98(3):615–621

    Google Scholar 

  • Wang K et al (2017b) Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70–90 Gy. J Clin Oncol 35(13):1387–1394

    Google Scholar 

  • Wang K et al (2017c) Heart dosimetric analysis of three types of cardiac toxicity in patients treated on dose-escalation trials for stage III non-small-cell lung cancer. Radiother Oncol 125(2):293–300

    Google Scholar 

  • Wang Y et al (2019) Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol 5(7):1008–1019

    Google Scholar 

  • Wong OY et al (2018) Survival impact of cardiac dose following lung stereotactic body radiotherapy. Clin Lung Cancer 19(2):e241–e246

    Google Scholar 

  • Wu W et al (2013) Long-term survival of patients with radiation heart disease undergoing cardiac surgery: a cohort study. Circulation 127(14):1476–1485

    Google Scholar 

  • Yamada M et al (1998) Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer 34(1):71–75

    Google Scholar 

  • Yamamoto T et al (2016) The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol 118(2):227–231

    Google Scholar 

  • Zhang XJ et al (2012) Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol 138(12):2103–2116

    Google Scholar 

  • Zhang K et al (2015) Atorvastatin ameliorates radiation-induced cardiac fibrosis in rats. Radiat Res 184(6):611–620

    Google Scholar 

  • Zhang TW et al (2019) Is the importance of heart dose overstated in the treatment of non-small cell lung cancer? A systematic review of the literature. Int J Radiat Oncol Biol Phys 104(3):582–589

    Google Scholar 

  • Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Google Scholar 

  • Zhao J et al (2016) Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys 95(5):1357–1366

    Google Scholar 

  • Zhou Z et al (2017) Pulmonary emphysema is a risk factor for radiation pneumonitis in NSCLC patients with squamous cell carcinoma after thoracic radiation therapy. Sci Rep 7(1):2748

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan E. Daly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azghadi, S.F., Daly, M.E. (2022). Radiation Therapy-Induced Lung and Heart Toxicity. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_336

Download citation

  • DOI: https://doi.org/10.1007/174_2022_336

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics