Skip to main content

Targeted Therapies in Non-small Cell Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Historically, platinum-doublet chemotherapy was the mainstay of treatment for all patients with advanced non-small cell lung cancer (NSCLC). With platinum-doublet treatment, patients had a median overall survival of approximately 8 months and a 1-year survival of 33% (Schiller et al. 2002). In the last 20 years, however, there have been remarkable advances in the understanding of the pathophysiology, immunology, genetics, and heterogeneity of NSCLC, which has led to a myriad of new drug approvals based upon improvements in survival and quality of life (Ramalingam et al. 2020; Peters et al. 2017, 2020; Hirsch et al. 2017; Chen et al. 2013). Previously, we approached all patients with NSCLC as a homogenous population. We now base treatment on each patient’s histology, molecular sequencing, and biomarkers of immune response. In this chapter, we will provide an overview of the discovery and biology of driver mutations and discuss the seven mutational targets for which treatment is currently fully approved (EGFR, ALK, ROS, RET, TRK, MET, BRAF, KRAS) and others for which investigational agents are likely to be approved in the near future (Her2). In addition, we will discuss some particular areas of interest with targeted therapies including brain metastases, issues of immunotherapy, and the influence of co-mutations and potential combinations with other agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann CJ, Stock G, Tay R, Dawod M, Gomes F, Califano R (2019) Targeted therapy for RET-rearranged non-small cell lung cancer: clinical development and future directions. Onco Targets Ther 12:7857–7864

    Google Scholar 

  • Bade BC, Dela Cruz CS (2020) Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41:1–24

    Google Scholar 

  • Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW (2016) Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci 73:1209–1224

    Google Scholar 

  • Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Google Scholar 

  • Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Google Scholar 

  • Camidge DR, Kim HR, Ahn MJ et al (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379:2027–2039

    Google Scholar 

  • Camidge DR, Kim HR, Ahn MJ et al (2020) Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the phase III ALTA-1L trial. J Clin Oncol 38:3592–3603

    Google Scholar 

  • Chen G, Feng J, Zhou C et al (2013) Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase III, randomised, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). Ann Oncol 24:1615–1622

    Google Scholar 

  • Chu QS (2020) Targeting non-small cell lung cancer: driver mutation beyond epidermal growth factor mutation and anaplastic lymphoma kinase fusion. Ther Adv Med Oncol 12:1758835919895756

    Google Scholar 

  • Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 19:4040–4045

    Google Scholar 

  • Doebele RC, Drilon A, Paz-Ares L et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 21:271–282

    Google Scholar 

  • Drilon A, Rekhtman N, Arcila M et al (2016) Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol 17:1653–1660

    Google Scholar 

  • Drilon A, Laetsch TW, Kummar S et al (2018a) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Google Scholar 

  • Drilon A, Somwar R, Mangatt BP et al (2018b) Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov 8:686–695

    Google Scholar 

  • Drilon A, Siena S, Dziadziuszko R et al (2020a) Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol 21:261–270

    Google Scholar 

  • Drilon A, Oxnard GR, Tan DSW et al (2020b) Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 383:813–824

    Google Scholar 

  • Drilon A, Clark JW, Weiss J et al (2020c) Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med 26:47–51

    Google Scholar 

  • Dudnik E, Peled N, Nechushtan H et al (2018) BRAF mutant lung cancer: programmed death ligand 1 expression, tumor mutational burden, microsatellite instability status, and response to immune check-point inhibitors. J Thorac Oncol 13:1128–1137

    Google Scholar 

  • Edelman MJ, Dvorkin M, Laktionov K, Navarro A, Juan-Vidal O, Kozlov V, Golden G, Jordan O, Deng CQ (2020) The anti-disialoganglioside (GD2) antibody dinutuximab (D) for second-line treatment (2LT) of patients (pts) with relapsed/refractory small cell lung cancer (RR SCLC): results from part 2 of the open-label, randomized, phase 2/3 distinct study. J Clin Oncol 38:9017

    Google Scholar 

  • Farago AF, Taylor MS, Doebele RC et al (2018) Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis Oncol 2018. https://doi.org/10.1200/PO.18.00037

  • Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G (2018) KRAS-mutant non-small cell lung cancer: from biology to therapy. Lung Cancer 124:53–64

    Google Scholar 

  • Fukuoka M, Yano S, Giaccone G et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected]. J Clin Oncol 21:2237–2246

    Google Scholar 

  • Gainor JF, Shaw AT, Sequist LV et al (2016) EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22:4585–4593

    Google Scholar 

  • Genova C, Rossi G, Tagliamento M et al (2020) Targeted therapy of oncogenic-driven advanced non-small cell lung cancer: recent advances and new perspectives. Expert Rev Respir Med 14:367–383

    Google Scholar 

  • Gini B, Thomas N, Blakely CM (2020) Impact of concurrent genomic alterations in epidermal growth factor receptor (EGFR)-mutated lung cancer. J Thorac Dis 12:2883–2895

    Google Scholar 

  • Guo Y, Cao R, Zhang X et al (2019) Recent progress in rare oncogenic drivers and targeted therapy for non-small cell lung cancer. Onco Targets Ther 12:10343–10360

    Google Scholar 

  • Halliday PR, Blakely CM, Bivona TG (2019) Emerging targeted therapies for the treatment of non-small cell lung cancer. Curr Oncol Rep 21:21

    Google Scholar 

  • Hammerman PS, Sos ML, Ramos AH et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1:78–89

    Google Scholar 

  • Haratake N, Seto T (2021) NTRK fusion-positive non-small-cell lung cancer: the diagnosis and targeted therapy. Clin Lung Cancer 22:1–5

    Google Scholar 

  • Hellman S, Weichselbaum RR (1995) Oligometastases. J Clin Oncol 13:8–10

    Google Scholar 

  • Hida T, Velcheti V, Reckamp KL et al (2019) A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer 138:124–130

    Google Scholar 

  • Hirsch FR, Scagliotti GV, Mulshine JL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311

    Google Scholar 

  • Hong DS, DuBois SG, Kummar S et al (2020a) Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21:531–540

    Google Scholar 

  • Hong DS, Fakih MG, Strickler JH et al (2020b) KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med 383:1207–1217

    Google Scholar 

  • Hosomi Y, Morita S, Sugawara S et al (2020) Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol 38:115–123

    Google Scholar 

  • Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736

    Google Scholar 

  • Jamme P, Fernandes M, Copin MC et al (2020) Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations. J Thorac Oncol 15:741–751

    Google Scholar 

  • Janne PA, Rybkin II, Spira AI, Riely GJ, Papadopoulos KP, Sabari JK, Johnson ML, Heist RS, Bazhenova L, Marce M, Pacheco JM, Leal TA, Velastegui K, Cornelius C, Olson P, Christensen JG, Kheoh T, Chao RC, Ou SHI (2020) KRYSTAL-1: activity and safety of adagrasib (MRTX849) in advanced/metastatic non-small-cell lung cancer (NSCLC) harboring KRAS G12C mutation. Eur J Cancer 138:Plenary Session

    Google Scholar 

  • Jebbink M, de Langen AJ, Boelens MC, Monkhorst K, Smit EF (2020) The force of HER2—a druggable target in NSCLC? Cancer Treat Rev 86:101996

    Google Scholar 

  • Koga T, Kobayashi Y, Tomizawa K et al (2018) Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: an in vitro study. Lung Cancer 126:72–79

    Google Scholar 

  • Kris MG, Natale RB, Herbst RS et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290:2149–2158

    Google Scholar 

  • Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Google Scholar 

  • Langer CJ, Redman MW, Wade JL 3rd et al (2019) SWOG S1400B (NCT02785913), a phase II study of GDC-0032 (Taselisib) for previously treated PI3K-positive patients with stage IV squamous cell lung cancer (lung-MAP sub-study). J Thorac Oncol 14:1839–1846

    Google Scholar 

  • Lee SH, Lee JK, Ahn MJ et al (2017) Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol 28:292–297

    Google Scholar 

  • Leonetti A, Facchinetti F, Rossi G et al (2018) BRAF in non-small cell lung cancer (NSCLC): pickaxing another brick in the wall. Cancer Treat Rev 66:82–94

    Google Scholar 

  • Li BT, Shen R, Buonocore D et al (2018) Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 36:2532–2537

    Google Scholar 

  • Li AY, McCusker MG, Russo A et al (2019) RET fusions in solid tumors. Cancer Treat Rev 81:101911

    Google Scholar 

  • Lim SM, Kim HR, Lee JS et al (2017) Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol 35:2613–2618

    Google Scholar 

  • Lim SM, Syn NL, Cho BC, Soo RA (2018) Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies. Cancer Treat Rev 65:1–10

    Google Scholar 

  • Lin JJ, Riely GJ, Shaw AT (2017) Targeting ALK: precision medicine takes on drug resistance. Cancer Discov 7:137–155

    Google Scholar 

  • Lin JJ, Liu SV, McCoach CE et al (2020) Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol 31:1725–1733

    Google Scholar 

  • Liu X, Jia Y, Stoopler MB et al (2016) Next-generation sequencing of pulmonary Sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol 34:794–802

    Google Scholar 

  • Liu C, Zheng S, Jin R et al (2020) The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 470:95–105

    Google Scholar 

  • Lovly CM, Iyengar P, Gainor JF (2017) Managing resistance to EFGR- and ALK-targeted therapies. Am Soc Clin Oncol Educ Book 37:607–618

    Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Google Scholar 

  • Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Google Scholar 

  • Markham A (2020) Pralsetinib: first approval. Drugs 80:1865–1870

    Google Scholar 

  • Mazieres J, Barlesi F, Filleron T et al (2016) Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann Oncol 27:281–286

    Google Scholar 

  • McCoach CE, Le AT, Gowan K et al (2018) Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin Cancer Res 24:3334–3347

    Google Scholar 

  • Mitsudomi T, Morita S, Yatabe Y et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Google Scholar 

  • Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Google Scholar 

  • Mok TS, Wu YL, Ahn MJ et al (2017a) Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376:629–640

    Google Scholar 

  • Mok TSK, Kim SW, Wu YL et al (2017b) Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-line gefitinib (IMPRESS): overall survival and biomarker analyses. J Clin Oncol 35:4027–4034

    Google Scholar 

  • Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Lee M, Linke R, Rosell R, Corral J, Migliorino MR, Pluzanski A, Sbar EI, Wang T, White JL, Wu YL (2018) Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. In: ASCO abstract 2018

    Google Scholar 

  • Mok TCD, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, Pérol M, Ou SI, Ahn JS, Shaw AT, Bordogna W, Smoljanović V, Hilton M, Ruf T, Noé J, Peters S (2020) Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol 31(8):1056

    Google Scholar 

  • Moore AR, Rosenberg SC, McCormick F, Malek S (2020) RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 19:533–552

    Google Scholar 

  • Morgensztern D, Besse B, Greillier L et al (2019) Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res 25:6958–6966

    Google Scholar 

  • Morris TA, Khoo C, Solomon BJ (2019) Targeting ROS1 rearrangements in non-small cell lung cancer: crizotinib and newer generation tyrosine kinase inhibitors. Drugs 79:1277–1286

    Google Scholar 

  • Nakagawa K, Garon EB, Seto T et al (2019) Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:1655–1669

    Google Scholar 

  • Noronha V, Patil VM, Joshi A et al (2020) Gefitinib versus Gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol 38:124–136

    Google Scholar 

  • O’Kane GM, Bradbury PA, Feld R et al (2017) Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer 109:137–144

    Google Scholar 

  • O’Leary CG, Andelkovic V, Ladwa R et al (2019) Targeting BRAF mutations in non-small cell lung cancer. Transl Lung Cancer Res 8:1119–1124

    Google Scholar 

  • Offin M, Rizvi H, Tenet M et al (2019) Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 25:1063–1069

    Google Scholar 

  • Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Google Scholar 

  • Oxnard GR, Yang JC, Yu H et al (2020) TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 31:507–516

    Google Scholar 

  • Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Google Scholar 

  • Paik PK, Felip E, Veillon R et al (2020) Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med 383:931–943

    Google Scholar 

  • Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Google Scholar 

  • Papadimitrakopoulou VA, Mok TS, Han JY et al (2020) Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol 31:1536–1544

    Google Scholar 

  • Park K, Haura EB, Leighl NB et al (2021) Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol 39(30):3391–3402. https://doi.org/10.1200/JCO.21.00662. Epub 2021 Aug 2

  • Peters S, Camidge DR, Shaw AT et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838

    Google Scholar 

  • Peters S, Shaw AT, Besse B et al (2020) Impact of lorlatinib on patient-reported outcomes in patients with advanced ALK-positive or ROS1-positive non-small cell lung cancer. Lung Cancer 144:10–19

    Google Scholar 

  • Pillai RN, Behera M, Berry LD et al (2017) HER2 mutations in lung adenocarcinomas: a report from the lung cancer mutation consortium. Cancer 123:4099–4105

    Google Scholar 

  • Planchard D, Kim TM, Mazieres J et al (2016) Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 17:642–650

    Google Scholar 

  • Planchard D, Smit EF, Groen HJM et al (2017) Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 18:1307–1316

    Google Scholar 

  • Ramalingam SS, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, Lin MC, Majem M, Shah R, Rukazenkov Y, Todd A, Markovets A, Barrett JC, Chmielecki J, Gray J (2018) Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol 29. https://doi.org/10.1093/annonc/mdy424.063

  • Ramalingam SS, Vansteenkiste J, Planchard D et al (2020) Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 382:41–50

    Google Scholar 

  • Recondo G, Bahcall M, Spurr LF et al (2020) Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14-mutant NSCLC. Clin Cancer Res 26:2615–2625

    Google Scholar 

  • Redman MW, Papadimitrakopoulou VA, Minichiello K et al (2020) Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. Lancet Oncol 21:1589–1601

    Google Scholar 

  • Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Google Scholar 

  • Roys A, Chang X, Liu Y, Xu X, Wu Y, Zuo D (2019) Resistance mechanisms and potent-targeted therapies of ROS1-positive lung cancer. Cancer Chemother Pharmacol 84:679–688

    Google Scholar 

  • Saito H, Fukuhara T, Furuya N et al (2019) Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 20:625–635

    Google Scholar 

  • Salgia R (2017) MET in lung cancer: biomarker selection based on scientific rationale. Mol Cancer Ther 16:555–565

    Google Scholar 

  • Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Google Scholar 

  • Sequist LV, Lynch TJ (2008) EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annu Rev Med 59:429–442

    Google Scholar 

  • Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Google Scholar 

  • Sequist LV, Han JY, Ahn MJ et al (2020) Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol 21:373–386

    Google Scholar 

  • Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R (2018) Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers (Basel) 10:62

    Google Scholar 

  • Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394

    Google Scholar 

  • Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971

    Google Scholar 

  • Shaw AT, Solomon BJ, Chiari R et al (2019a) Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol 20:1691–1701

    Google Scholar 

  • Shaw AT, Riely GJ, Bang YJ et al (2019b) Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol 30:1121–1126

    Google Scholar 

  • Shaw AT, Bauer TM, de Marinis F et al (2020) First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 383:2018–2029

    Google Scholar 

  • Shigematsu H, Lin L, Takahashi T et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97:339–346

    Google Scholar 

  • Sholl LM, Aisner DL, Varella-Garcia M et al (2015) Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol 10:768–777

    Google Scholar 

  • Skoulidis F, Heymach JV (2019) Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 19:495–509

    Google Scholar 

  • Smit ENK, Nagasaka M, Felip E, Goto Y, Li BT, Pacheco JM, Murakami H, Barlesi F, Nicholas Saltos A, Perol M, Udagawa H, Saxena K, Shiga R, Guevara FM, Acharyya S, Shahidi J, Planchard D, Janne PA (2020) Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): interim results of DESTINY-Lung01. J Clin Oncol 38(15_Suppl):9504

    Google Scholar 

  • Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Google Scholar 

  • Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177

    Google Scholar 

  • Solomon BJ, Kim DW, Wu YL et al (2018a) Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol 36:2251–2258

    Google Scholar 

  • Solomon BJ, Besse B, Bauer TM et al (2018b) Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 19:1654–1667

    Google Scholar 

  • Solomon BJ, Tan L, Lin JJ et al (2020) RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol 15:541–549

    Google Scholar 

  • Soria JC, Tan DSW, Chiari R et al (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389:917–929

    Google Scholar 

  • Soria JC, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125

    Google Scholar 

  • Spigel DR, Reynolds C, Waterhouse D et al (2018) Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation—positive advanced non-small cell lung cancer (CheckMate 370). J Thorac Oncol 13:682–688

    Google Scholar 

  • Tan AC (2020) Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 11:511–518

    Google Scholar 

  • Tsao AS, Scagliotti GV, Bunn PA Jr et al (2016) Scientific advances in lung cancer 2015. J Thorac Oncol 11:613–638

    Google Scholar 

  • Wang XZM (2020) First-line tyrosine kinase inhibitor with or without aggressive upfront local radiation therapy in patients with EGFRm oligometastatic non-small cell lung cancer: interim results of a randomized phase III, open-label clinical trial. J Clin Oncol 38(Suppl 15):9508

    Google Scholar 

  • Wang Y, Jiang T, Qin Z et al (2019) HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol 30:447–455

    Google Scholar 

  • Weickhardt AJ, Scheier B, Burke JM et al (2012) Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 7:1807–1814

    Google Scholar 

  • Weiss J, Kavanagh B, Deal A et al (2019) Phase II study of stereotactic radiosurgery for the treatment of patients with oligoprogression on erlotinib. Cancer Treat Res Commun 19:100126

    Google Scholar 

  • Wolf J, Seto T, Han JY et al (2020) Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 383:944–957

    Google Scholar 

  • Wu YL, Zhou C, Hu CP et al (2014) Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol 15:213–222

    Google Scholar 

  • Wu YL, Zhou C, Liam CK et al (2015) First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol 26:1883–1889

    Google Scholar 

  • Wu YL, Cheng Y, Zhou X et al (2017) Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 18:1454–1466

    Google Scholar 

  • Wu YL, Tsuboi M, He J et al (2020a) Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med 383:1711–1723

    Google Scholar 

  • Wu YL, Cheng Y, Zhou J et al (2020b) Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): an open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med 8:1132–1143

    Google Scholar 

  • Xia B, Nagasaka M, Zhu VW, Ou SI, Soo RA (2020) How to select the best upfront therapy for metastatic disease? Focus on ALK-rearranged non-small cell lung cancer (NSCLC). Transl Lung Cancer Res 9:2521–2534

    Google Scholar 

  • Yang JC, Wu YL, Schuler M et al (2015) Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 16:141–151

    Google Scholar 

  • Yu HA, Sima CS, Huang J et al (2013) Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 8:346–351

    Google Scholar 

  • Zhang K, Yuan Q (2016) Current mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and updated therapy strategies in human nonsmall cell lung cancer. J Cancer Res Ther 12:C131–C1C7

    Google Scholar 

  • Zhang B, Zhang L, Yue D et al (2020) Genomic characteristics in Chinese non-small cell lung cancer patients and its value in prediction of postoperative prognosis. Transl Lung Cancer Res 9:1187–1201

    Google Scholar 

  • Zhong WZ, Wang Q, Mao WM et al (2021) Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC: final overall survival analysis of CTONG1104 phase III trial. J Clin Oncol 39:713–722

    Google Scholar 

  • Zhou C, Wu YL, Chen G et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–742

    Google Scholar 

  • Zhou C, Wu YL, Chen G et al (2015) Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol 26:1877–1883

    Google Scholar 

  • Zhu QG, Zhang SM, Ding XX, He B, Zhang HQ (2017) Driver genes in non-small cell lung cancer: characteristics, detection methods, and targeted therapies. Oncotarget 8:57680–57692

    Google Scholar 

  • Zhou C, Ramalingam SS, Kim TM et al (2021) Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with egfr exon 20 insertion–positive metastatic non–small cell lung cancer: a phase 1/2 open-label nonrandomized clinical trial. JAMA Oncol 7(12):e214761

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Edelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauman, J.R., Edelman, M.J. (2022). Targeted Therapies in Non-small Cell Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_312

Download citation

  • DOI: https://doi.org/10.1007/174_2022_312

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics