Skip to main content

PET and PET/CT in Treatment Planning

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 317 Accesses

Abstract

Positron emission tomography/computed tomography (PET/CT) imaging now plays a fundamental role in treatment planning for patients with lung cancer, particularly for those who are candidates for potentially curative radiation therapy (RT) (Akhurst et al. 2015; De Ruysscher et al. 2010). 18F-Fluorodeoxyglucose (18F-FDG) remains the most widely used PET radiopharmaceutical in oncology and FDG-PET has proven to be the most accurate whole-body imaging modality for staging lung cancer since almost all types are highly metabolically active. This results in high contrast between FDG uptake in tumor and most surrounding normal tissues (apart from the central nervous system and urinary tract) facilitating lesion detection throughout the body including primary, nodal, and metastatic sites (MacManus et al. 2001). With dissemination of hybrid PET/CT scanners, the information provided by PET is complemented by detailed structural information from a contemporaneous CT component, but further complementary imaging using specialized CT protocols or magnetic resonance imaging (MRI) can provide additional correlative information to improve diagnostic certainty. Serial imaging provides unique insights in the evolution of cancers both structurally and metabolically in response to treatment and PET/CT has thus become an important diagnostic tool in therapeutic response assessment and restaging of suspected relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A (2014) Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging 41(2):350–356

    Google Scholar 

  • Adebahr S, Collette S, Shash E, Lambrecht M, Le Pechoux C, Faivre-Finn C et al (2015) LungTech, an EORTC Phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective. Br J Radiol 88(1051):20150036

    Google Scholar 

  • Akhurst T, MacManus M, Hicks RJ (2015) Lung cancer. PET Clin 10(2):147–158

    Google Scholar 

  • Andersen MB, Harders SW, Ganeshan B, Thygesen J, Torp Madsen HH, Rasmussen F (2016) CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiol 57(6):669–676

    Google Scholar 

  • Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929

    Google Scholar 

  • Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379(24):2342–2350

    Google Scholar 

  • van Baardwijk A, Bosmans G, Dekker A, van Kroonenburgh M, Boersma L, Wanders S et al (2007) Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother Oncol 82(2):145–152

    Google Scholar 

  • Ball D, Everitt S, Hicks R, Callahan J, Herschtal A, Kron T et al (2017) Serial FDG and FLT PET/CT during curative-intent chemo-radiotherapy for NSCLC impacts patient management and may predict clinical outcomes. J Thorac Oncol 12(1):S420

    Google Scholar 

  • Ball D, Mai GT, Vinod S, Babington S, Ruben J, Kron T et al (2019) Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol 20(4):494–503

    Google Scholar 

  • Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 6(2):112–117

    Google Scholar 

  • Bissonnette JP, Sun A, Grills IS, Almahariq MF, Geiger G, Vogel W et al (2021) Non-small cell lung cancer stage migration as a function of wait times from diagnostic imaging: a pooled analysis from five international centres. Lung Cancer 155:136–143

    Google Scholar 

  • Boersma LJ, Damen EM, de Boer RW, Muller SH, Valdes Olmos RA, van Zandwijk N et al (1996) Recovery of overall and local lung function loss 18 months after irradiation for malignant lymphoma. J Clin Oncol 14(5):1431–1441

    Google Scholar 

  • Bollineni VR, Wiegman EM, Pruim J, Groen HJ, Langendijk JA (2012a) Hypoxia imaging using Positron Emission Tomography in non-small cell lung cancer: implications for radiotherapy. Cancer Treat Rev 38(8):1027–1032

    Google Scholar 

  • Bollineni VR, Widder J, Pruim J, Langendijk JA, Wiegman EM (2012b) Residual (1)(8)F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int J Radiat Oncol Biol Phys 83(4):e551–e555

    Google Scholar 

  • Bollineni VR, Kerner GS, Pruim J, Steenbakkers RJ, Wiegman EM, Koole MJ et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III-IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180

    Google Scholar 

  • Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS (2017) Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from NRG oncology. Med Phys 44:2595

    Google Scholar 

  • Bucknell N, Hardcastle N, Jackson P, Hofman M, Callahan J, Eu P et al (2020) Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer. BMJ Open 10(12):e042465

    Google Scholar 

  • Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25(9):1244–1247

    Google Scholar 

  • Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931

    Google Scholar 

  • Callahan J, Kron T, Schneider-Kolsky M, Hicks RJ (2011) The clinical significance and management of lesion motion due to respiration during PET/CT scanning. Cancer Imaging 11:224–236

    Google Scholar 

  • Callahan J, Kron T, Siva S, Simoens N, Edgar A, Everitt S et al (2014) Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat Oncol 9:291

    Google Scholar 

  • Chang JH, Gandhidasan S, Finnigan R, Whalley D, Nair R, Herschtal A et al (2017) Stereotactic ablative body radiotherapy for the treatment of spinal oligometastases. Clin Oncol 29:e119

    Google Scholar 

  • Chen AB, Neville BA, Sher DJ, Chen K, Schrag D (2011) Survival outcomes after radiation therapy for stage III non-small-cell lung cancer after adoption of computed tomography-based simulation. J Clin Oncol 29(17):2305–2311

    Google Scholar 

  • Chirindel A, Adebahr S, Schuster D, Schimek-Jasch T, Schanne DH, Nemer U et al (2015) Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother Oncol 115(3):335–341

    Google Scholar 

  • Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE et al (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 35(1):56–62

    Google Scholar 

  • De Ruysscher D, Wanders S, van Haren E, Hochstenbag M, Geeraedts W, Utama I et al (2005a) Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 62(4):988–994

    Google Scholar 

  • De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C et al (2005b) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77(1):5–10

    Google Scholar 

  • De Ruysscher D, Faivre-Finn C, Nestle U, Hurkmans CW, Le Pechoux C, Price A et al (2010) European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J Clin Oncol 28(36):5301–5310

    Google Scholar 

  • Deschner EE, Gray LH (1959) Influence of oxygen tension on x-ray-induced chromosomal damage in Ehrlich ascites tumor cells irradiated in vitro and in vivo. Radiat Res 11(1):115–146

    Google Scholar 

  • Dingemans AM, de Langen AJ, van den Boogaart V, Marcus JT, Backes WH, Scholtens HT et al (2011) First-line erlotinib and bevacizumab in patients with locally advanced and/or metastatic non-small-cell lung cancer: a phase II study including molecular imaging. Ann Oncol 22(3):559–566

    Google Scholar 

  • Doll C, Duncker-Rohr V, Rucker G, Mix M, MacManus M, De Ruysscher D et al (2014) Influence of experience and qualification on PET-based target volume delineation. When there is no expert--ask your colleague. Strahlenther Onkol 190(6):555–562

    Google Scholar 

  • Eaton BR, Pugh SL, Bradley JD, Masters G, Kavadi VS, Narayan S et al (2016) Institutional enrollment and survival among NSCLC patients receiving chemoradiation: NRG oncology radiation therapy oncology group (RTOG) 0617. J Natl Cancer Inst 108(9):djw034

    Google Scholar 

  • van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J, Emans D et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104(1):67–71

    Google Scholar 

  • Even AJ, van der Stoep J, Zegers CM, Reymen B, Troost EG, Lambin P et al (2015) PET-based dose painting in non-small cell lung cancer: comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol 116(2):281–286

    Google Scholar 

  • Everitt S, Plumridge N, Herschtal A, Bressel M, Ball D, Callahan J et al (2013) The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer. Radiother Oncol 106(3):288–291

    Google Scholar 

  • Everitt SJ, Ball DL, Hicks RJ, Callahan J, Plumridge N, Collins M et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074

    Google Scholar 

  • Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73(4):1228–1234

    Google Scholar 

  • Fleckenstein J, Hellwig D, Kremp S, Grgic A, Groschel A, Kirsch CM et al (2011) F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys 81(4):e283–e289

    Google Scholar 

  • Glazer GM, Orringer MB, Gross BH, Quint LE (1984) The mediastinum in non-small cell lung cancer: CT-surgical correlation. AJR Am J Roentgenol 142(6):1101–1105

    Google Scholar 

  • Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE et al (2016) The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 11(1):39–51

    Google Scholar 

  • Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285(7):914–924

    Google Scholar 

  • Gould MK, Kuschner WG, Rydzak CE, Maclean CC, Demas AN, Shigemitsu H et al (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139(11):879–892

    Google Scholar 

  • Grassetto G, Fornasiero A, Bonciarelli G, Banti E, Rampin L, Marzola MC et al (2010) Additional value of FDG-PET/CT in management of “solitary” liver metastases: preliminary results of a prospective multicenter study. Mol Imaging Biol 12(2):139–144

    Google Scholar 

  • Gregoire V, Mackie TR (2011) State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 15(6–7):555–559

    Google Scholar 

  • Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A et al (2012) Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med 53(7):1007–1015

    Google Scholar 

  • Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D et al (2007) Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys 68(4):1030–1035

    Google Scholar 

  • Hall EJ (2005) Dose-painting by numbers: a feasible approach? Lancet Oncol 6(2):66

    Google Scholar 

  • Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D et al (2008) Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys 71(4):967–971

    Google Scholar 

  • Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E et al (2017) Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group No. 211. Med Phys 44:e1

    Google Scholar 

  • Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19(3):133–150

    Google Scholar 

  • Herder GJ, Golding RP, Hoekstra OS, Comans EF, Teule GJ, Postmus PE et al (2004) The performance of (18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 31(9):1231–1236

    Google Scholar 

  • Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D et al (2004) Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 60(2):412–418

    Google Scholar 

  • Hjorthaug K, Hojbjerg JA, Knap MM, Tietze A, Haraldsen A, Zacho HD et al (2015) Accuracy of 18F-FDG PET-CT in triaging lung cancer patients with suspected brain metastases for MRI. Nucl Med Commun 36(11):1084–1090

    Google Scholar 

  • Hugo GD, Yan D, Liang J (2007) Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol 52(1):257–274

    Google Scholar 

  • Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45(3):773–789

    Google Scholar 

  • Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349

    Google Scholar 

  • Kalade AV, Eddie Lau WF, Conron M, Wright GM, Desmond PV, Hicks RJ et al (2008) Endoscopic ultrasound-guided fine-needle aspiration when combined with positron emission tomography improves specificity and overall diagnostic accuracy in unexplained mediastinal lymphadenopathy and staging of non-small-cell lung cancer. Intern Med J 38(11):837–844

    Google Scholar 

  • Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham MM et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33(2):391–398

    Google Scholar 

  • Konert T, Vogel W, MacManus MP, Nestle U, Belderbos J, Gregoire V et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34

    Google Scholar 

  • Kong FM, Ten Haken RK, Schipper M, Frey KA, Hayman J, Gross M et al (2017) Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol 3(10):1358–1365

    Google Scholar 

  • Lambrecht M, Melidis C, Sonke JJ, Adebahr S, Boellaard R, Verheij M et al (2016) Lungtech, a phase II EORTC trial of SBRT for centrally located lung tumours - a clinical physics perspective. Radiat Oncol 11:7

    Google Scholar 

  • Le Pechoux C, Faivre-Finn C, Ramella S, McDonald F, Manapov F, Putora PM et al (2020) ESTRO ACROP guidelines for target volume definition in the thoracic radiation treatment of small cell lung cancer. Radiother Oncol 152:89–95

    Google Scholar 

  • Li XA, Qi XS, Pitterle M, Kalakota K, Mueller K, Erickson BA et al (2007) Interfractional variations in patient setup and anatomic change assessed by daily computed tomography. Int J Radiat Oncol Biol Phys 68(2):581–591

    Google Scholar 

  • Lin P, Koh ES, Lin M, Vinod SK, Ho-Shon I, Yap J et al (2011) Diagnostic and staging impact of radiotherapy planning FDG-PET-CT in non-small-cell lung cancer. Radiother Oncol 101(2):284–290

    Google Scholar 

  • Liu T, Karlsen M, Karlberg AM, Redalen KR (2020) Hypoxia imaging and theranostic potential of [(64)Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 10(1):33

    Google Scholar 

  • Louie AV, Senan S, Patel P, Ferket BS, Lagerwaard FJ, Rodrigues GB et al (2014) When is a biopsy-proven diagnosis necessary before stereotactic ablative radiotherapy for lung cancer?: a decision analysis. Chest 146(4):1021–1028

    Google Scholar 

  • Mac Manus MP, Hicks RJ, Ball DL, Kalff V, Matthews JP, Salminen E et al (2001) F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92(4):886–895

    Google Scholar 

  • Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK et al (2003) Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21(7):1285–1292

    Google Scholar 

  • Mac Manus MP, Hicks RJ, Matthews JP, Wirth A, Rischin D, Ball DL (2005) Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer 49(1):95–108

    Google Scholar 

  • Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL et al (2011) Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys 80(5):1365–1371

    Google Scholar 

  • Mac Manus MP, Everitt S, Bayne M, Ball D, Plumridge N, Binns D et al (2013) The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: results of a prospective study with mature survival data. Radiother Oncol 106(3):292–298

    Google Scholar 

  • MacManus MP, Hicks RJ, Matthews JP, Hogg A, McKenzie AF, Wirth A et al (2001) High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50(2):287–293

    Google Scholar 

  • MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol 91(1):85–94

    Google Scholar 

  • Mah K, Van Dyk J, Keane T, Poon PY (1987) Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy. Int J Radiat Oncol Biol Phys 13(2):179–188

    Google Scholar 

  • Mahasittiwat P, Yuan S, Xie C, Ritter T, Cao Y, Ten Haken RK et al (2013) Metabolic tumor volume on pet reduced more than gross tumor volume on CT during radiotherapy in patients with non-small cell lung cancer treated with 3DCRT or SBRT. J Radiat Oncol 2(2):191–202

    Google Scholar 

  • McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N et al (2012) [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol 104(1):52–57

    Google Scholar 

  • McCurdy M, Bergsma DP, Hyun E, Kim T, Choi E, Castillo R et al (2013) The role of lung lobes in radiation pneumonitis and radiation-induced inflammation in the lung: a retrospective study. J Radiat Oncol 2(2):203–208

    Google Scholar 

  • Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP et al (2013) The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat 12(5):429–446

    Google Scholar 

  • Murray JG, Erasmus JJ, Bahtiarian EA, Goodman PC (1997) Talc pleurodesis simulating pleural metastases on 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 168(2):359–360

    Google Scholar 

  • Murray P, Franks K, Hanna GG (2017) A systematic review of outcomes following stereotactic ablative radiotherapy in the treatment of early-stage primary lung cancer. Br J Radiol 90(1071):20160732

    Google Scholar 

  • Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44(3):593–597

    Google Scholar 

  • Nestle U, Rischke HC, Eschmann SM, Holl G, Tosch M, Miederer M et al (2015) Improved inter-observer agreement of an expert review panel in an oncology treatment trial--insights from a structured interventional process. Eur J Cancer 51(17):2525–2533

    Google Scholar 

  • Nestle U, Adebahr S, Kaier K, Gkika E, Schimek-Jasch T, Hechtner M et al (2020a) Quality of life after pulmonary stereotactic fractionated radiotherapy (SBRT): results of the phase II STRIPE trial. Radiother Oncol 148:82–88

    Google Scholar 

  • Nestle U, Schimek-Jasch T, Kremp S, Schaefer-Schuler A, Mix M, Kusters A et al (2020b) Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. Lancet Oncol 21(4):581–592

    Google Scholar 

  • Nielsen M, Bertelsen A, Westberg J, Jensen HR, Brink C (2009) Cone beam CT evaluation of patient set-up accuracy as a QA tool. Acta Oncol 48(2):271–276

    Google Scholar 

  • Ogasawara N, Suga K, Karino Y, Matsunaga N (2002) Perfusion characteristics of radiation-injured lung on Gd-DTPA-enhanced dynamic magnetic resonance imaging. Invest Radiol 37(8):448–457

    Google Scholar 

  • Seute T, Leffers P, ten Velde GP, Twijnstra A (2008) Detection of brain metastases from small cell lung cancer: consequences of changing imaging techniques (CT versus MRI). Cancer 112(8):1827–1834

    Google Scholar 

  • Sindoni A, Minutoli F, Pontoriero A, Iati G, Baldari S, Pergolizzi S (2016) Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: review of the literature. Lung Cancer 96:78–86

    Google Scholar 

  • Siva S, Callahan J, Kron T, Martin OA, MacManus MP, Ball DL et al (2014) A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer. BMC Cancer 14:740

    Google Scholar 

  • Siva S, Senan S, Ball D (2015a) Ablative therapies for lung metastases: a need to acknowledge the efficacy and toxicity of stereotactic ablative body radiotherapy. Ann Oncol 26(10):2196

    Google Scholar 

  • Siva S, Hardcastle N, Kron T, Bressel M, Callahan J, MacManus MP et al (2015b) Ventilation/perfusion positron emission tomography-based assessment of radiation injury to lung. Int J Radiat Oncol Biol Phys 93(2):408–417

    Google Scholar 

  • Siva S, Thomas R, Callahan J, Hardcastle N, Pham D, Kron T et al (2015c) High-resolution pulmonary ventilation and perfusion PET/CT allows for functionally adapted intensity modulated radiotherapy in lung cancer. Radiother Oncol 115(2):157–162

    Google Scholar 

  • Sogaard R, Fischer BM, Mortensen J, Hojgaard L, Lassen U (2011) Preoperative staging of lung cancer with PET/CT: cost-effectiveness evaluation alongside a randomized controlled trial. Eur J Nucl Med Mol Imaging 38(5):802–809

    Google Scholar 

  • Sorcini B, Tilikidis A (2006) Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 10(5):252–257

    Google Scholar 

  • Steinfort DP, Liew D, Irving LB (2013) Radial probe EBUS versus CT-guided needle biopsy for evaluation of peripheral pulmonary lesions: an economic analysis. Eur Respir J 41(3):539–547

    Google Scholar 

  • Steinfort DP, Siva S, Leong TL, Rose M, Herath D, Antippa P et al (2016) Systematic endobronchial ultrasound-guided mediastinal staging versus positron emission tomography for comprehensive mediastinal staging in NSCLC before radical radiotherapy of non-small cell lung cancer: a pilot study. Medicine 95(8):e2488

    Google Scholar 

  • Trinkaus ME, Blum R, Rischin D, Callahan J, Bressel M, Segard T et al (2013) Imaging of hypoxia with (18) F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481

    Google Scholar 

  • Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I et al (2011) Simultaneous positron emission tomography (PET) assessment of metabolism with (1)(8)F-fluoro-2-deoxy-d-glucose (FDG), proliferation with (1)(8)F-fluoro-thymidine (FLT), and hypoxia with (1)(8)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol 98(1):109–116

    Google Scholar 

  • Videtic GM, Rice TW, Murthy S, Suh JH, Saxton JP, Adelstein DJ et al (2008) Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int J Radiat Oncol Biol Phys 72(3):702–706

    Google Scholar 

  • Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P et al (2012) What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys 82(3):1164–1171

    Google Scholar 

  • Yan D, Lockman D, Martinez A, Wong J, Brabbins D, Vicini F et al (2005) Computed tomography guided management of interfractional patient variation. Semin Radiat Oncol 15(3):168–179

    Google Scholar 

  • Yankelevitz DF, Henschke CI, Batata M, Kim YS, Chu F (1994) Lung cancer: evaluation with MR imaging during and after irradiation. J Thorac Imaging 9(1):41–46

    Google Scholar 

  • Yun M, Kim W, Alnafisi N, Lacorte L, Jang S, Alavi A (2001) 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med 42(12):1795–1799

    Google Scholar 

  • Zhuang M, Garcia DV, Kramer GM, Frings V, Smit EF, Dierckx R et al (2019) Variability and repeatability of quantitative uptake metrics in (18)F-FDG PET/CT of non-small cell lung cancer: impact of segmentation method, uptake interval, and reconstruction protocol. J Nucl Med 60(5):600–607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael MacManus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacManus, M., Everitt, S., Hicks, R.J. (2022). PET and PET/CT in Treatment Planning. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_308

Download citation

  • DOI: https://doi.org/10.1007/174_2022_308

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics