Skip to main content

Epigenetic Events in Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 323 Accesses

Abstract

The term epigenetics refers to the study of heritable and reversible changes in the genome that modulate gene expression without altering the DNA sequence. These mechanisms comprise the addition of methyl groups to a cytosine within a CpG dinucleotide, referred to as DNA methylation, posttranslational and covalent modifications of the histone proteins, and chromatin remodeling. The different epigenetic events elicit structural and functional changes within chromatin that determine many different cellular processes and response to environmental modifications through the control of gene expression. Abnormal epigenetic states can predispose to or cause human diseases, including cancer. In cancer cells, alterations in DNA methylation or genetic alterations in histone protein modifiers or in chromatin remodelers promote changes in the expression levels of important genes and genome instability, thus contributing to cancer development. In this chapter, the different epigenetic processes that are disrupted in cancer cells are described with special focus on the genetic abnormalities that disturb chromatin stability to promote lung cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augert A, Zhang Q, Bates B, Cui M, Wang X, Wildey G, Dowlati A, MacPherson D (2017) Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance). J Thorac Oncol 12(4):704–713

    Google Scholar 

  • Biegel JA, Busse TM, Weissman BE (2014) SWI/SNF chromatin remodeling complexes and cancer. Am J Med Genet 166:350–366

    Google Scholar 

  • Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R, Montuenga LM, Minna JD, Yokota J, Sanchez-Cespedes M (2009) A gene-alteration profile of human lung cancer cell lines. Hum Mutat 30(8):1199–1206

    Google Scholar 

  • Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM et al (2008) Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27:460–468

    Google Scholar 

  • Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511):543–550

    Google Scholar 

  • Cardoso WV, Lü J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133(9):1611–1624

    Google Scholar 

  • Choi CYH, Wakelee HA, Neal JW, Pinder-Schenck MC, Yu HM, Chang SD, Adler JR, Modlin LA, Harsh GR, Soltys SG (2017) Vorinostat and concurrent stereotactic radiosurgery for non-small cell lung cancer brain metastases: a phase 1 dose escalation trial. Int J Radiat Oncol Biol Phys 99(1):16–21

    Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Google Scholar 

  • De Smet C, Lurquin C, Lethé B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11):7327–7335

    Google Scholar 

  • Del Rizzo PA, Trievel RC (2014) Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochim Biophys Acta 1839:1404–1415

    Google Scholar 

  • Delmore JE et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917

    Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Google Scholar 

  • Ehrlich M (2010) DNA hypomethylation in cancer cells. Epigenomics 1:239–259

    Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16 Spec No 1:R50–R59

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111(1):47–54

    Google Scholar 

  • Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073

    Google Scholar 

  • Frühwald MC, Nemes K, Boztug H, Cornips MCA, Evans DG, Farah R, Glentis S, Jorgensen M, Katsibardi K, Hirsch S, Jahnukainen K, Kventsel I, Kerl K, Kratz CP, Pajtler KW, Kordes U, Ridola V, Stutz E, Bourdeaut F (2021) Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer 20(4):305–316

    Google Scholar 

  • Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT (2017) Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31(2):286–299

    Google Scholar 

  • George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563):47–53

    Google Scholar 

  • Gong F, Chiu LY, Miller KM (2016) Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet 12(9):e1006272

    Google Scholar 

  • Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J, Chen K, Walker J, McDonald S, Bose R, Ornitz D, Xiong D, You M, Dooling DJ, Watson M, Mardis ER, Wilson RK (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150(6):1121–1134

    Google Scholar 

  • Gray JE, Saltos A, Tanvetyanon T, Haura EB, Creelan B, Antonia SJ, Shafique M, Zheng H, Dai W, Saller JJ, Chen Z, Tchekmedyian N, Goas K, Thapa R, Boyle TA, Chen DT, Beg AA (2019) Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin Cancer Res 25(22):6623–6632

    Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420

    Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Google Scholar 

  • Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1(7):598–607

    Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Google Scholar 

  • Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22(2):128–134

    Google Scholar 

  • Kim KH et al (2015) SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med 21:1491–1496

    Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain containing proteins and histone demethylation. Nat Rev Genet 7(9):715–727

    Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Google Scholar 

  • Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM, Gnad F, Guan Y, Gilbert HN, Stinson J, Klijn C, Guillory J, Bhatt D, Vartanian S, Walter K, Chan J, Holcomb T, Dijkgraaf P, Johnson S, Koeman J, Minna JD, Gazdar AF, Stern HM, Hoeflich KP, Wu TD, Settleman J, de Sauvage FJ, Gentleman RC, Neve RM, Stokoe D, Modrusan Z, Seshagiri S, Shames DS, Zhang Z (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 22(12):2315–2327

    Google Scholar 

  • Mamdani H, Jalal SI (2020) Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol 8:582370

    Google Scholar 

  • Manceau G, Letouzé E, Guichard C, Didelot A, Cazes A, Corté H, Fabre E, Pallier K, Imbeaud S, Le Pimpec-Barthes F, Zucman-Rossi J, Laurent-Puig P, Blons H (2013) Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma. Int J Cancer 132(9):2217–2221

    Google Scholar 

  • Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, Sanchez-Cespedes M (2008) Frequent SMARCA4/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29(5):617–622

    Google Scholar 

  • Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ III (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 108(40):16669–16674

    Google Scholar 

  • Mohammad HP, Barbash O, Creasy CL (2019) Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 25(3):403–418

    Google Scholar 

  • Peifer M, Fernandez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44(10):1104–1110

    Google Scholar 

  • Pereira C, Gimenez-Xavier P, Pros E, Pajares MJ, Moro M, Gomez A, Navarro A, Condom E, Moran S, Gomez-Lopez G, Graña O, Rubio-Camarillo M, Martinez-Martí A, Yokota J, Carretero J, Galbis JM, Nadal E, Pisano D, Sozzi G, Felip E, Montuenga LM, Roz L, Villanueva A, Sanchez-Cespedes M (2017) Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin Cancer Res 23(12):3203–3213

    Google Scholar 

  • Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordoñez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190

    Google Scholar 

  • Pros E, Saigi M, Alameda D, Gomez-Mariano G, Martinez-Delgado B, Alburquerque-Bejar JJ, Carretero J, Tonda R, Esteve-Codina A, Catala I, Palmero R, Jove M, Lazaro C, Patiño-Garcia A, Gil-Bazo I, Verdura S, Teulé A, Torres-Lanzas J, Sidransky D, Reguart N, Pio R, Juan-Vidal O, Nadal E, Felip E, Montuenga LM, Sanchez-Cespedes M (2020) Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors. Ann Oncol 31(2):274–282

    Google Scholar 

  • Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, Thomas S, Espinoza-Delgado I, Vokes EE, Gandara DR, Belani CP (2010) Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 28(1):56–62

    Google Scholar 

  • Rao RC, Dou Y (2015) Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15:334–346

    Google Scholar 

  • Reid T, Valone F, Lipera W, Irwin D, Paroly W, Natale R et al (2004) Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer 45:381–386

    Google Scholar 

  • Rekhtman N, Montecalvo J, Chang JC, Alex D, Ptashkin RN, Ai N, Sauter JL, Kezlarian B, Jungbluth A, Desmeules P, Beras A, Bishop JA, Plodkowski AJ, Gounder MM, Schoenfeld AJ, Namakydoust A, Li BT, Rudin CM, Riely GJ, Jones DR, Ladanyi M, Travis WD (2020) SMARCA4-deficient thoracic sarcomatoid tumors represent primarily smoking-related undifferentiated carcinomas rather than primary thoracic sarcomas. J Thorac Oncol 15(2):231–247

    Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    Google Scholar 

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH (2000) Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci U S A 97:13796–13800

    Google Scholar 

  • Rodriguez-Paredes M, Martinez de Paz A, Simó-Riudalbas L, Sayols S, Moutinho C, Moran S, Villanueva A, Vázquez-Cedeira M, Lazo PA, Carneiro F, Moura CS, Vieira J, Teixeira MR, Esteller M (2014) Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene 33(21):2807–2813

    Google Scholar 

  • Romero OA, Sanchez-Cespedes M (2014) The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene 33(21):2681–2689

    Google Scholar 

  • Romero OA et al (2012) The tumour suppressor and chromatin-remodelling factor SMARCA4 antagonizes Myc activity and promotes cell differentiation in human cancer. EMBO Mol Med 4:603–616

    Google Scholar 

  • Romero OA, Verdura S, Torres-Diz M, Gomez A, Moran S, Condom E, Esteller M, Villanueva A, Sanchez-Cespedes M (2017) Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming. Oncogene 36(9):1287–1296

    Google Scholar 

  • Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T (2016) Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci 107(6):713–720

    Google Scholar 

  • Sanchez-Cespedes M, Reed AL, Buta M, Wu L, Westra WH, Herman JG, Yang SC, Jen J, Sidransky D (1999) Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. Oncogene 18(43):5843–5849

    Google Scholar 

  • Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V, Figg WD, Murgo AJ, Steinberg SM (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12(19):5777–5785

    Google Scholar 

  • Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF et al (2008) Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clin Cancer Res 14:188–198

    Google Scholar 

  • Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA (2018) The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 18(11):696–705

    Google Scholar 

  • Sorm F, Pískala A, Cihák A, Veselý J (1964) 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20(4):202–203

    Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    Google Scholar 

  • Takeuchi S, Hase T, Shimizu S, Ando M, Hata A, Murakami H et al (2020) Phase I study of vorinostat with gefitinib in BIM deletion polymorphism/epidermal growth factor receptor mutation double-positive lung cancer. Cancer Sci 111:561–570

    Google Scholar 

  • Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD, Weissman BE (2020) Small-cell carcinoma of the ovary, hypercalcemic type-genetics, new treatment targets, and current management guidelines. Clin Cancer Res 26(15):3908–3917

    Google Scholar 

  • Traynor AM, Dubey S, Eickhoff JC, Kolesar JM, Schell K, Huie MS et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4:522–526

    Google Scholar 

  • Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Google Scholar 

  • Wang L, Shilatifard A (2019) UTX mutations in human cancer. Cancer Cell 35(2):168–176

    Google Scholar 

  • Wang SP et al (2017) A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol Cell 67:308–321.e6

    Google Scholar 

  • Witta SE, Jotte RM, Konduri K, Neubauer MA, Spira AI, Ruxer RL, Varella-Garcia M, Bunn PA Jr, Hirsch FR (2012) Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol 30(18):2248–2255

    Google Scholar 

  • Yoshida K, Fujiwara Y, Goto Y, Kohno T, Yoshida A, Tsuta K, Ohe Y (2018) The first case of SMARCB1 (INI1) - deficient squamous cell carcinoma of the pleura: a case report. BMC Cancer 18(1):398

    Google Scholar 

  • Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Rep 16(11):1467–1481

    Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montse Sanchez-Cespedes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romero, O.A., Sanchez-Cespedes, M. (2022). Epigenetic Events in Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_299

Download citation

  • DOI: https://doi.org/10.1007/174_2022_299

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics