Skip to main content

Genomic Alterations in Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 323 Accesses

Abstract

Lung cancer is a heterogeneous disease characterized by genomic alterations in oncogenes and tumor suppressor genes. The increased use of genomic profile has allowed a better understanding of the lung cancer biology and the development of targeted therapies with improved efficacy and toxicity profile compared to standard cytotoxic chemotherapy. Nevertheless, most of the targetable alterations occur in patients with adenocarcinoma histology and virtually all patients develop tumor progression after the initial benefit from targeted therapy indicating that novel approaches are still needed to continue to improve the outcomes for patients with advanced-stage lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Google Scholar 

  • Anderson ND, de Borja R, Young MD et al (2018) Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361:eaam8419

    Google Scholar 

  • Babina IS, Turner NC (2017) Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 17:318–332

    Google Scholar 

  • Barlesi F, Mazieres J, Merlio JP et al (2016) Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 387:1415–1426

    Google Scholar 

  • Burns TF, Borghaei H, Ramalingam SS et al (2020) Targeting KRAS-mutant non-small-cell lung cancer: one mutation at a time, with a focus on KRAS G12C mutations. J Clin Oncol 38:4208–4218

    Google Scholar 

  • Camidge DR, Kim HR, Ahn MJ et al (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379:2027–2039

    Google Scholar 

  • Clark D, Pazdernik N, McGehee M (2019) Mutations and repair. In: Molecular biology. Academic, San Diego, CA, pp 832–879

    Google Scholar 

  • Corcoran RB, Chabner BA (2018) Application of cell-free DNA analysis to cancer treatment. N Engl J Med 379:1754–1765

    Google Scholar 

  • Dagogo-Jack I, Rooney M, Lin JJ et al (2019a) Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin Cancer Res 25:6662–6670

    Google Scholar 

  • Dagogo-Jack I, Martinez P, Yeap BY et al (2019b) Impact of BRAF mutation class on disease characteristics and clinical outcomes in BRAF-mutant lung cancer. Clin Cancer Res 25:158–165

    Google Scholar 

  • Desai A, Adjei AA (2016) FGFR signaling as a target for lung cancer therapy. J Thorac Oncol 11:9–20

    Google Scholar 

  • Devarakonda S, Sankararaman S, Herzog BH et al (2019) Circulating tumor DNA profiling in small-cell lung cancer identifies potentially targetable alterations. Clin Cancer Res 25:6119–6126

    Google Scholar 

  • Doebele RC, Drilon A, Paz-Ares L et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:271–282

    Google Scholar 

  • Drilon A, Cappuzzo F, Ou SI et al (2017) Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol 12:15–26

    Google Scholar 

  • Drilon A, Hu ZI, Lai GGY et al (2018a) Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 15:151–167

    Google Scholar 

  • Drilon A, Laetsch TW, Kummar S et al (2018b) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Google Scholar 

  • Drilon A, Siena S, Dziadziuszko R et al (2020a) Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:261–270

    Google Scholar 

  • Drilon A, Oxnard GR, Tan DSW et al (2020b) Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 383:813–824

    Google Scholar 

  • Drilon A, Jenkins C, Iyer S et al (2021) ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 18:35–55

    Google Scholar 

  • Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17:58

    Google Scholar 

  • Elez E, Tabernero J (2020) The effective targeting of KRAS(G12C) elusiveness. Cancer Cell 38:785–787

    Google Scholar 

  • Eng J, Hsu M, Chaft JE et al (2016) Outcomes of chemotherapies and HER2 directed therapies in advanced HER2-mutant lung cancers. Lung Cancer 99:53–56

    Google Scholar 

  • Facchinetti F, Rossi G, Bria E et al (2017) Oncogene addiction in non-small cell lung cancer: focus on ROS1 inhibition. Cancer Treat Rev 55:83–95

    Google Scholar 

  • Fleuren ED, Zhang L, Wu J et al (2016) The kinome ‘at large’ in cancer. Nat Rev Cancer 16:83–98

    Google Scholar 

  • Friedlaender A, Drilon A, Banna GL et al (2020) The METeoric rise of MET in lung cancer. Cancer 126:4826–4837

    Google Scholar 

  • Gagan J, Van Allen EM (2015) Next-generation sequencing to guide cancer therapy. Genome Med 7:80

    Google Scholar 

  • Gainor JF, Dardaei L, Yoda S et al (2016) Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6:1118–1133

    Google Scholar 

  • Gainor JF, Curigliano G, Kim D-W et al (2020) Registrational dataset from the phase I/II ARROW trial of pralsetinib (BLU-667) in patients (pts) with advanced RET fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol 38:9515–9515

    Google Scholar 

  • Garrido P, Conde E, de Castro J et al (2020) Updated guidelines for predictive biomarker testing in advanced non-small-cell lung cancer: a National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 22:989–1003

    Google Scholar 

  • George J, Lim JS, Jang SJ et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53

    Google Scholar 

  • Gong J, Pan K, Fakih M et al (2018) Value-based genomics. Oncotarget 9:15792–15815

    Google Scholar 

  • Griesinger F, Eberhardt W, Nusch A et al (2021) Biomarker testing in non-small cell lung cancer in routine care: analysis of the first 3,717 patients in the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer 152:174–184

    Google Scholar 

  • Guo R, Luo J, Chang J et al (2020) MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17:569–587

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Google Scholar 

  • Hanna NH, Robinson AG, Temin S et al (2021) Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO and OH (CCO) Joint Guideline Update. J Clin Oncol 39(9):1040–1091

    Google Scholar 

  • Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454

    Google Scholar 

  • Hong DS, Fakih MG, Strickler JH et al (2020) KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med 383:1207–1217

    Google Scholar 

  • Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736

    Google Scholar 

  • Jayasinghe RG, Cao S, Gao Q et al (2018) Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 23:270–281.e3

    Google Scholar 

  • Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Google Scholar 

  • Katayama R, Lovly CM, Shaw AT (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 21:2227–2235

    Google Scholar 

  • Katoh M (2019) Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 16:105–122

    Google Scholar 

  • Koga T, Kobayashi Y, Tomizawa K et al (2018) Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: an in vitro study. Lung Cancer 126:72–79

    Google Scholar 

  • Kosaka T, Tanizaki J, Paranal RM et al (2017) Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors. Cancer Res 77:2712–2721

    Google Scholar 

  • Kris MG, Johnson BE, Berry LD et al (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006

    Google Scholar 

  • Landi L, Chiari R, Tiseo M et al (2019) Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): a phase II, prospective, multicenter, two-arms trial. Clin Cancer Res 25:7312–7319

    Google Scholar 

  • Latysheva NS, Babu MM (2016) Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res 44:4487–4503

    Google Scholar 

  • Le T, Gerber DE (2017) ALK alterations and inhibition in lung cancer. Semin Cancer Biol 42:81–88

    Google Scholar 

  • Leighl NB, Page RD, Raymond VM et al (2019) Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res 25:4691–4700

    Google Scholar 

  • Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6:a020768

    Google Scholar 

  • Leonetti A, Sharma S, Minari R et al (2019) Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 121:725–737

    Google Scholar 

  • Li BT, Shen R, Buonocore D et al (2018) Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 36:2532–2537

    Google Scholar 

  • Liao RG, Jung J, Tchaicha J et al (2013) Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res 73:5195–5205

    Google Scholar 

  • Lin JJ, Riely GJ, Shaw AT (2017) Targeting ALK: precision medicine takes on drug resistance. Cancer Discov 7:137–155

    Google Scholar 

  • Lin JJ, Liu SV, McCoach CE et al (2020) Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol 31:1725–1733

    Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Google Scholar 

  • Macconaill LE, Garraway LA (2010) Clinical implications of the cancer genome. J Clin Oncol 28:5219–5228

    Google Scholar 

  • Marchetti A, Felicioni L, Malatesta S et al (2011) Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29:3574–3579

    Google Scholar 

  • Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Google Scholar 

  • Moore AR, Rosenberg SC, McCormick F et al (2020) RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 19:533–552

    Google Scholar 

  • Morgensztern D, Besse B, Greillier L et al (2019) Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res 25:6958–6966

    Google Scholar 

  • Nguyen-Ngoc T, Bouchaab H, Adjei AA et al (2015) BRAF alterations as therapeutic targets in non-small-cell lung cancer. J Thorac Oncol 10:1396–1403

    Google Scholar 

  • Odegaard JI, Vincent JJ, Mortimer S et al (2018) Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin Cancer Res 24:3539–3549

    Google Scholar 

  • Oh DY, Bang YJ (2020) HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol 17:33–48

    Google Scholar 

  • Owonikoko TK, Niu H, Nackaerts K et al (2020) Randomized phase II study of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line therapy for SCLC: primary and correlative biomarker analyses. J Thorac Oncol 15:274–287

    Google Scholar 

  • Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Google Scholar 

  • Paik PK, Felip E, Veillon R et al (2020) Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med 383:931–943

    Google Scholar 

  • Peters S, Camidge DR, Shaw AT et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838

    Google Scholar 

  • Piper-Vallillo AJ, Sequist LV, Piotrowska Z (2020) Emerging treatment paradigms for EGFR-mutant lung cancers progressing on osimertinib: a review. J Clin Oncol. https://doi.org/10.1200/JCO.19.03123

  • Planchard D, Kim TM, Mazieres J et al (2016) Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 17:642–650

    Google Scholar 

  • Planchard D, Smit EF, Groen HJM et al (2017) Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 18:1307–1316

    Google Scholar 

  • Plenker D, Bertrand M, de Langen AJ et al (2018) Structural alterations of MET trigger response to MET kinase inhibition in lung adenocarcinoma patients. Clin Cancer Res 24:1337–1343

    Google Scholar 

  • Poirier JT, George J, Owonikoko TK et al (2020) New approaches to SCLC therapy: from the laboratory to the clinic. J Thorac Oncol 15:520–540

    Google Scholar 

  • Qin A, Johnson A, Ross JS et al (2019) Detection of known and novel FGFR fusions in non-small cell lung cancer by comprehensive genomic profiling. J Thorac Oncol 14:54–62

    Google Scholar 

  • Remon J, Hendriks LEL, Cardona AF et al (2020) EGFR exon 20 insertions in advanced non-small cell lung cancer: a new history begins. Cancer Treat Rev 90:102105

    Google Scholar 

  • Robichaux JP, Elamin YY, Tan Z et al (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638–646

    Google Scholar 

  • Rolfo C, Russo A (2020) HER2 mutations in non-small cell lung cancer: a Herculean effort to hit the target. Cancer Discov 10:643–645

    Google Scholar 

  • Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Google Scholar 

  • Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Google Scholar 

  • Rudin CM, Durinck S, Stawiski EW et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116

    Google Scholar 

  • Rudin CM, Poirier JT, Byers LA et al (2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19:289–297

    Google Scholar 

  • Salehi-Rad R, Li R, Paul MK et al (2020) The biology of lung cancer: development of more effective methods for prevention, diagnosis, and treatment. Clin Chest Med 41:25–38

    Google Scholar 

  • Santarius T, Shipley J, Brewer D et al (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:59–64

    Google Scholar 

  • Schmid S, Li JJN, Leighl NB (2020) Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer 147:123–129

    Google Scholar 

  • Schrock AB, Frampton GM, Suh J et al (2016) Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol 11:1493–1502

    Google Scholar 

  • Sharma SV, Bell DW, Settleman J et al (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Google Scholar 

  • Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971

    Google Scholar 

  • Shaw AT, Bauer TM, de Marinis F et al (2020) First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 383:2018–2029

    Google Scholar 

  • Singal G, Miller PG, Agarwala V et al (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321:1391–1399

    Google Scholar 

  • Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177

    Google Scholar 

  • Solomon BJ, Tan L, Lin JJ et al (2020) RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol 15:541–549

    Google Scholar 

  • Soria JC, Tan DS, Chiari R et al (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389:917–929

    Google Scholar 

  • Soria JC, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125

    Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Google Scholar 

  • Strickler JH, Weekes CD, Nemunaitis J et al (2018) First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol 36:3298–3306

    Google Scholar 

  • Subbiah V, Cote GJ (2020) Advances in targeting RET-dependent cancers. Cancer Discov 10:498–505

    Google Scholar 

  • Subbiah V, Yang D, Velcheti V et al (2020) State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol 38:1209–1221

    Google Scholar 

  • The Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Google Scholar 

  • The Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550

    Google Scholar 

  • Tong M, Seeliger MA (2015) Targeting conformational plasticity of protein kinases. ACS Chem Biol 10:190–200

    Google Scholar 

  • Trenker R, Jura N (2020) Receptor tyrosine kinase activation: from the ligand perspective. Curr Opin Cell Biol 63:174–185

    Google Scholar 

  • Vaishnavi A, Le AT, Doebele RC (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34

    Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Google Scholar 

  • Vokes NI, Janne PA (2017) Resistance in trans-ition. J Thorac Oncol 12:1608–1610

    Google Scholar 

  • Wang Y, Yang N, Zhang Y et al (2020) Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S triple mutations by brigatinib and cetuximab combination therapy. J Thorac Oncol 15:1369–1375

    Google Scholar 

  • Westover D, Zugazagoitia J, Cho BC et al (2018) Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 29:i10–i19

    Google Scholar 

  • Wolf J, Seto T, Han JY et al (2020) Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 383:944–957

    Google Scholar 

  • Wu YL, Cheng Y, Zhou X et al (2017) Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 18:1454–1466

    Google Scholar 

  • Yaeger R, Corcoran RB (2019) Targeting alterations in the RAF-MEK pathway. Cancer Discov 9:329–341

    Google Scholar 

  • Yang JC, Wu YL, Schuler M et al (2015) Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 16:141–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Morgensztern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgensztern, D. (2022). Genomic Alterations in Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_298

Download citation

  • DOI: https://doi.org/10.1007/174_2022_298

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics