Abstract
Pulmonary imaging is the least evolved branch of proton MRI, primarily due to the low volume fraction of tissue in the lung; only ~20% of the volume contains tissue or blood while the remainder is filled with air. By comparison, most of the volume in other organs is hydrogen. Another source of the inherently weak MR signal in the lungs is the extremely large area of the tissue-gas interface. The 3 ppm difference in magnetic susceptibility between tissue and air causes an alteration of the local magnetic field resulting in very short signal coherence times. Despite having limited SNR, several promising techniques have been developed (Edelman et al. 1996; Mai et al. 2001; Hatabu et al. 2001; Jakob et al. 2004; Detre et al. 1994; Hopkins and Prisk 2010; Deimling et al. 2008; Bauman et al. 2009). These techniques work better at low magnetic fields (such as 1.5 T) because of the air/tissue susceptibility issue. This may be problematic for the future as the overall drive for clinical imaging is in the direction of higher field strengths. In preclinical small animal imaging, Kuethe et al. (2007) used 1.89 T field strength system to produce lung images approaching the quality of CT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdeen N, Cross A, Cron G, White S, Rand T, Miller D, Santyr G (2006) Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med 56(2):255–264. doi:10.1002/mrm.20943
American Lung Association (2010) Chronic obstructive pulmonary disease COPD. ALA, Washington, DC, pp 1–6. http://action.lung.org/site/DocServer/state-of-lung-disease-in-diverse-communities-2010.pdf?docID=8744
Bauman G, Puderbach M, Deimling M, Chefdhotel C, Schad L, Kauczor H-U, Geiger B, Jellus V, Dinkel J, Hintze C (2009) Functional MRI of the lung by means of Fourier decomposition. Abstract:1-1
Bode FR, Dosman J, Martin RR, Ghezzo H, Macklem PT (1976) Age and sex differences in lung elasticity, and in closing capacity in nonsmokers. J Appl Physiol 41(2):129–135
Butler JP, Mair RW, Hoffmann D, Hrovat MI, Rogers RA, Topulos GP, Walsworth RL, Patz S (2002) Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance. J Phys Condens Matter 14(13):L297–L304
Chang YV (2013) MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med 69(3):884–890. doi:10.1002/mrm.24304
Chang YV, Quirk JD, Ruset IC, Atkinson JJ, Hersman FW, Woods JC (2014) Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med 71(1):339–344. doi:10.1002/mrm.24992
Cleveland ZI, Cofer GP, Metz G, Beaver D, Nouls J, Kaushik SS, Kraft M, Wolber J, Kelly KT, McAdams HP, Driehuys B (2010) Hyperpolarized 129 Xe MR imaging of alveolar gas uptake in humans. PLoS One 5(8):e12192. doi:10.1371/journal.pone.0012192
Coxson H, Rogers R, Whittall K, D’yachkova Y, Pare P, Sciurba F, Hogg J (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159(3):851–856
Deimling M, Jellus V, Geiger B, Chefdhotel C (2008) Time resolved lung ventilation imaging by Fourier decomposition. Intl Soc Mag Reson Med 16:2639
Deninger A, Eberle B, Ebert M, Grossmann T, Heil W, Kauczor H, Lauer L, Markstaller K, Otten E, Schmiedeskamp J, Schreiber W, Surkau R, Thelen M, Weiler N (1999) Quantification of regional intrapulmonary oxygen partial pressure evolution during apnea by (3)He MRI. J Mag Reson 141(2):207–216. doi:10.1006/jmre.1999.1902S109078079991902X. [pii]
Deninger A, Eberle B, Ebert M, Grossmann T, Hanisch G, Heil W, Kauczor H, Markstaller K, Otten E, Schreiber W, Surkau R, Weiler N (2000) (3)he-MRI-based measurements of intrapulmonary p(O2) and its time course during apnea in healthy volunteers: first results, reproducibility, and technical limitations. NMR Biomed 13(4):194–201. doi:10.1002/1099-1492(200006)13:4<194::AID-NBM643>3.0.CO;2-D. [pii]
Deninger AJ, Månsson S, Petersson JS, Pettersson G, Magnusson P, Svensson J, Fridlund B, Hansson G, Erjefeldt I, Wollmer P, Golman K (2002) Quantitative measurement of regional lung ventilation using 3He MRI. Magn Reson Med 48(2):223–232. doi:10.1002/mrm.10206
Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 7(1–2):75–82
Driehuys B, Cofer G, Pollaro J, Mackel J, Hedlund L, Johnson G (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A 103(48):18278–18283. doi:10.1073/pnas.0608458103. [pii] 0608458103
Driehuys B, Driehuys B, Martinez-Jimenez S, Martinez-Jimenez S, Cleveland ZI, Cleveland ZI, Metz GM, Metz GM, Beaver DM, Beaver DM, Nouls JC, Nouls JC, Kaushik SS, Kaushik SS, Firszt R, Firszt R, Willis C, Willis C, Kelly KT, Kelly KT, Wolber J, Kraft M, McAdams HP (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262(1):279–289. doi:10.1148/radiol.11102172
Ebner L, He M, Virgincar RS, Heacock T, Kaushik SS, Freemann MS, McAdams HP, Kraft M, Driehuys B (2017) Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate asthma. Investig Radiol 52(2):120–127. doi:10.1097/RLI.0000000000000322
Edelman R, Hatabu H, Tadamura E, Li W, Prasad P (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2(11):1236–1239
Hatabu H, Tadamura E, Chen Q, Stock KW, Li W, Prasad PV, Edelman RR (2001) Pulmonary ventilation: dynamic MRI with inhalation of molecular oxygen. Eur J Radiol 37(3):172–178
Hogg J, Coxson H, Brumwell M, Beyers N, Doerschuk C, MacNee W, Wiggs B (1994) Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries. J Appl Physiol 77(4):1795–1800
Hopkins SR, Prisk GK (2010) Lung perfusion measured using magnetic resonance imaging: new tools for physiological insights into the pulmonary circulation. J Magn Reson Imaging 32(6):1287–1301. doi:10.1002/jmri.22378
Jakob P, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D (2004) Assessment of human pulmonary function using oxygen-enhanced T1 imaging in patients with cystic fibrosis. Magn Reson Med 51(5):1009–1016
Jameson CJ, Jameson AK, Hwang JK (1988) Nuclear spin relaxation by intermolecular magnetic dipole coupling in the gas phase. 129 Xe in oxygen. J Chem Phys 89(7):4074
Kaushik SS, Freeman MS, Cleveland ZI, Davies J, Stiles J, Virgincar RS, Robertson SH, He M, Kelly KT, Foster WM (2013) Probing the regional distribution of pulmonary gas exchange through single-breath gas-and dissolved-phase 129Xe MR imaging. J Appl Physiol 115(6):850–860
Kaushik SS, Freeman MS, Yoon SW, Liljeroth MG, Stiles JV, Roos JE, Michael Foster WS, Rackley CR, McAdams HP, Driehuys B (2014) Measuring diffusion limitation with a perfusion-limited gas—hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol 117(6):577–585. doi:10.1152/japplphysiol.00326.2014
Kuethe DO, Adolphi NL, Fukushima E (2007) Short data-acquisition times improve projection images of lung tissue. Magn Reson Med 57(6):1058–1064. doi:10.1002/mrm.21230
Lutey BA, Lefrak SS, Woods JC, Tanoli T, Quirk JD, Bashir A, Yablonskiy DA, Conradi MS, Bartel ST, Pilgram TK, Cooper JD, Gierada DS (2008) Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 248(2):655–661. doi:10.1148/radiol.2482071838
Mai VM, Bankier AA, Prasad PV, Li W, Storey P, Edelman RR, Chen Q (2001) MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J Magn Reson Imaging 14(5):574–579
Månsson S, Wolber J, Driehuys B, Wollmer P, Golman K (2003) Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med 50(6):1170–1179. doi:10.1002/mrm.10649
Marshall H, Parra-Robles J, Deppe MH, Lipson DA, Lawson R, Wild JM (2013) 3He pO2 mapping is limited by delayed-ventilation and diffusion in chronic obstructive pulmonary disease. Magn Reson Med 71(3):1172–1178. doi:10.1002/mrm.24779
Miller GW, Mugler JP, Altes TA, Cai J, Mata JF, De Lange EE, Tobias WA, Cates GD, Brookeman JR (2010) A short-breath-hold technique for lung pO2 mapping with 3He MRI. Magn Reson Med 63(1):127–136. doi:10.1002/mrm.22181
Mugler JP, Altes TA, Ruset IC, Dregely IM, Mata JF, Miller GW, Ketel S, Ketel J, Hersman FW, Ruppert K (2010) Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci 107(50):21707–21712. doi:10.1073/pnas.1011912107
Muradyan I, Loring S, Ferrigno M, Lindholm P, Topulos G, Patz S, Butler J (2010) Inhalation heterogeneity from subresidual volumes in elite divers. J Appl Physiol (1985) 109(6):1969
Muradyan I, Butler JP, Dabaghyan M, Hrovat M, Dregely I, Ruset I, Topulos GP, Frederick E, Hatabu H, Hersman WF, Patz S (2012) Single-breath xenon polarization transfer contrast (SB-XTC): implementation and initial results in healthy humans. J Magn Reson Imaging 37(2):457–470. doi:10.1002/jmri.23823
Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H, Barcus S, Muradyan I, Dabaghyan M, Moroz GD, Rosen MS, Patz S, Barlow MJ, Chekmenev EY, Goodson BM (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci 110(35):14150–14155. doi:10.1073/pnas.1306586110
Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H, Muradyan I, Dabaghyan M, Ranta K, Moroz GD, Rosen MS, Patz S, Barlow MJ, Chekmenev EY, Goodson BM (2014) XeNA: an automated ‘open-source’; (129)Xe hyperpolarizer for clinical use. Magn Reson Imaging 32(5):541–550. doi:10.1016/j.mri.2014.02.002
Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE (2014) Pulmonary hyperpolarized 129Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: proof-of-concept demonstration in healthy and COPD subjects. Mag Reson Med. doi:10.1002/mrm.25550
Patz S, Hersman FW, Muradyan I, Hrovat MI, Ruset IC, Ketel S, Jacobson F, Topulos GP, Hatabu H, Butler JP (2007) Hyperpolarized (129)Xe MRI: a viable functional lung imaging modality? Eur J Radiol 64(3):335–344. doi:10.1016/j.ejrad.2007.08.008
Patz S, Muradyan I, Hrovat MI, Ruset IC, Topulos G, Covrig SD, Frederick E, Hatabu H, Hersman FW, Butler JP (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol 15(6):713–727. doi:10.1016/j.acra.2008.01.008
Patz S, Muradyan I, Hrovat M, Dabaghyan M, Washko G, Hatabu H, Butler J (2011) Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results. New J Phys 13:015009
Qing K, Mugler JP III, Altes TA, Jiang Y, Mata JF, Miller GW, Ruset IC, Hersman FW, Ruppert K (2014a) Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed 27(12):1490–1501. doi:10.1002/nbm.3179
Qing K, Ruppert K, Jiang Y, Mata JF, Miller GW, Shim YM, Wang C, Ruset IC, Hersman FW, Altes TA, Mugler JP (2014b) Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI. J Magn Reson Imaging 39(2):346–359. doi:10.1002/jmri.24181
Rahn F (1964) Handbook of physiology: respiration, vol 1. Williams and Wilkins, Baltimore
Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44(3):349–357
Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP (2004) Exploring lung function with hyperpolarized (129)Xe nuclear magnetic resonance. Magn Reson Med 51(4):676–687. doi:10.1002/mrm.10736
Saam B, Happer W, Middleton H (1995) Nuclear relaxation of 3He in the presence of O2. Phys Rev A 52(1):862–865
Shukla Y, Wheatley A, Kirby M, Svenningsen S, Farag A, Santyr GE, Paterson NAM, McCormack DG, Parraga G (2012) Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol 19:941–951. doi:10.1016/j.acra.2012.03.018
Stewart NJ, Leung G, Norquay G, Marshall H, Parra-Robles J, Murphy PS, Schulte RF, Elliot C, Condliffe R, Griffiths PD, Kiely DG, Whyte MK, Wolber J, Wild JM (2014) Experimental validation of the hyperpolarized 129Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med 74(1):196–207. doi:10.1002/mrm.25400
Stewart NJ, Horn FC, Norquay G, Collier GJ, Yates DP, Lawson R, Marshall H, Wild JM (2016) Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med:1–7. doi:10.1002/mrm.26310
Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC (2016) Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros:1–8. doi:10.1016/j.jcf.2016.07.008
Virgincar RS, Cleveland ZI, Sivaram Kaushik S, Freeman MS, Nouls J, Cofer GP, Martinez-Jimenez S, He M, Kraft M, Wolber J, Page McAdams H, Driehuys B (2012) Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR Biomed 26(4):424–435. doi:10.1002/nbm.2880
Walkup LL, Thomen RP, Akinyi TG, Watters E, Ruppert K, Clancy JP, Woods JC, Cleveland ZI (2016) Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol:1–12. doi:10.1007/s00247-016-3672-1
Weibel ER (1984) The pathway for oxygen. Harvard University Press, Cambridge, MA
Wild J, Fichele S, Woodhouse N, Paley M, Kasuboski L, van Beek E (2005) 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med 53(5):1055–1064. doi:10.1002/mrm.20423
Yu J, Rajaei S, Ishii M, Law M, Emami K, Woodburn J, Kadlecek S, Vahdat V, Rizi R (2008) Measurement of pulmonary partial pressure of oxygen and oxygen depletion rate with hyperpolarized helium-3 MRI: a preliminary reproducibility study on pig model. Acad Radiol 15(6):702–712. doi:10.1016/j.acra.2008.01.024. [pii] S1076-6332(08)00088-3
Yu J, Law M, Kadlecek S, Emami K, Ishii M, Stephen M, Woodburn JM, Vahdat V, Rizi RR (2009) Simultaneous measurement of pulmonary partial pressure of oxygen and apparent diffusion coefficient by hyperpolarized 3He MRI. Magn Reson Med 61(5):1015–1021. doi:10.1002/mrm.21854
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Muradyan, I., Patz, S. (2017). Hyperpolarized 129Xenon MRI of the Lung. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_99
Download citation
DOI: https://doi.org/10.1007/174_2017_99
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42616-7
Online ISBN: 978-3-319-42617-4
eBook Packages: MedicineMedicine (R0)