Advertisement

pp 1-15 | Cite as

Multislice PET/CT in Neuroendocrine Tumors

  • Gabriele Pöpperl
  • Clemens Cyran
Chapter
Part of the Medical Radiology book series

Abstract

Neuroendocrine tumors (NET) constitute a rare and heterogeneous group of neoplasms with variable clinical and biological features and variable prognosis ranging from very slow growing tumors to highly aggressive ones. Although NET comprise less than 2% of GI malignancies, these tumors are actually increasingly prevalent, which probably mostly reflects higher awareness of these kind of tumors and more sensitive diagnostic tools. Besides clinical features and biochemical tumor markers diagnosis of NETs is based on imaging. Functional PET imaging combined with multi-slice CT (PET/CT) has gained great impact on patient management by optimizing the staging of the disease, visualization of small occult tumor and evaluation of eligibility for somatostatin analogue treatment. This chapter provides an overview on the different radiopharmaceuticals that are used for PET/CT imaging of NETs and their impact on therapeutic management.

References

  1. Ahmed A, Turner G, King B et al (2009) Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study. Endocr Relat Cancer 16:885–894CrossRefPubMedGoogle Scholar
  2. Alonso O, Rodríguez-Taroco M, Savio E et al (2014) 68Ga-DOTATATE PET/CT in the evaluation of patients with neuroendocrine metastatic carcinoma of unknown origin. Ann Nucl Med 28:638–645CrossRefPubMedGoogle Scholar
  3. Ambrosini V, Nanni C, Zompatori M et al (2010) 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727CrossRefPubMedGoogle Scholar
  4. Ambrosini V, Tomassetti P, Rubello D et al (2007) Role of 18F-dopa PET/CT imaging in the management of patients with 111In-pentetreotide negative GEP tumours. Nucl Med Commun 28:473–477CrossRefPubMedGoogle Scholar
  5. Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993CrossRefPubMedGoogle Scholar
  6. Auernhammer CJ, Göke B (2011) Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut 60:1009–1021CrossRefPubMedGoogle Scholar
  7. Bahri H, Laurence L, Edeline J et al (2014) High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med 55:1786–1790CrossRefPubMedGoogle Scholar
  8. Baumann T, Rottenburger C, Nicolas G et al (2016) Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - imaging and staging. Best Pract Res Clin Endocrinol Metab 30:45–57CrossRefPubMedGoogle Scholar
  9. Binderup T, Knigge U, Loft A et al (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16:978–985CrossRefPubMedGoogle Scholar
  10. Bodei L, Ferone D, Grana CM et al (2009) Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Investig 32:360–369CrossRefGoogle Scholar
  11. Bodei L, Mueller-Brand J, Baum RP et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boellaard R, O'Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200CrossRefPubMedGoogle Scholar
  13. Bombardieri E, Aktolun C, Baum RP et al (2003) FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30:115–124Google Scholar
  14. Breeman WA, de Jong M, de Blois E et al (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485CrossRefPubMedGoogle Scholar
  15. Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626CrossRefPubMedGoogle Scholar
  16. Caplin ME, Pavel M, Ruszniewski P (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371:1556–1557CrossRefPubMedGoogle Scholar
  17. Cescato R, Waser B, Fani M et al (2011) Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J Nucl Med 52:1886–1890CrossRefPubMedGoogle Scholar
  18. Christ E, Wild D, Ederer S et al (2013) Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol 1(2):115–122CrossRefPubMedGoogle Scholar
  19. Cimitan M, Buonadonna A, Cannizzaro R et al (2003) Somatostatin receptor scintigraphy versus chromogranin A assay in the management of patients with neuroendocrine tumors of different types: clinical role. Ann Oncol 14:1135–1141CrossRefPubMedGoogle Scholar
  20. Decristoforo C, Mather SJ, Cholewinski W et al (2000) 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325CrossRefPubMedGoogle Scholar
  21. Dromain C, de Baere T, Lumbroso J et al (2005) Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 23:​70–78CrossRefPubMedGoogle Scholar
  22. Eriksson B, Bergström M, Orlefors H et al (2000) Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies. Q J Nucl Med 44:68–76PubMedGoogle Scholar
  23. Ezziddin S, Lohmar J, Yong-Hing CJ et al (2012) Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med 37:e141–e147CrossRefPubMedGoogle Scholar
  24. Fottner C, Helisch A, Anlauf M et al (2010) 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab 95:2800–2810CrossRefPubMedGoogle Scholar
  25. Frilling A, Sotiropoulos GC, Radtke A et al (2010) The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg 252:850–856CrossRefPubMedGoogle Scholar
  26. Gabriel M, Decristoforo C, Donnemiller E et al (2003) An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 44:708–716PubMedGoogle Scholar
  27. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518CrossRefPubMedGoogle Scholar
  28. Gabriel M, Muehllechner P, Decristoforo C et al (2005) 99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging 49:237–244PubMedGoogle Scholar
  29. Gabriel M, Oberauer A, Dobrozemsky G et al (2009) 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 50:1427–1434CrossRefPubMedGoogle Scholar
  30. Garin E, Le Jeune F, Devillers A et al (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864CrossRefPubMedGoogle Scholar
  31. Ginj M, Zhang H, Waser B et al (2006) Radiolabelled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci 103:16436–16441ADSCrossRefPubMedPubMedCentralGoogle Scholar
  32. Grozinsky-Glasberg S, Barak D, Fraenkel M et al (2011) Peptide receptor radioligand therapy is an effective treatment for the long-term stabilization of malignant gastrinomas. Cancer 117:1377–1385CrossRefPubMedGoogle Scholar
  33. Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770CrossRefPubMedGoogle Scholar
  34. Haug AR, Auernhammer CJ, Wangler B et al (2010) 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 51:1349–1356CrossRefPubMedGoogle Scholar
  35. Haug AR, Cindea-Drimus R, Auernhammer CJ et al (2012) The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med 53:1686–1692CrossRefPubMedGoogle Scholar
  36. Haug AR, Cindea-Drimus R, Auernhammer CJ et al (2014) Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology 270:517–525CrossRefPubMedGoogle Scholar
  37. Hellman P, Lundstrom T, Ohrvall U et al (2002) Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases. World J Surg 26:991–997CrossRefPubMedGoogle Scholar
  38. Hoffman JM, Melega WP, Hawk TC et al (1992) The effects of carbidopa administration on 6-[18F]fluoro-L-dopa kinetics in positron emission tomography. J Nucl Med 33:1472–1477PubMedGoogle Scholar
  39. Hope TA, Pampaloni MH, Nakakura E et al (2015) Simultaneous 68Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging 40:1432–1440CrossRefPubMedGoogle Scholar
  40. Ichikawa T, Peterson MS, Federle MP et al (2000) Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 216:163–171CrossRefPubMedGoogle Scholar
  41. Kabasakal L, Demirci E, Ocak M et al (2012) Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39:1271–1277CrossRefPubMedGoogle Scholar
  42. Kaemmerer D, Peter L, Lupp A et al (2011) Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:1659–1668CrossRefPubMedGoogle Scholar
  43. Kauhanen S, Seppanen M, Minn H et al (2007) Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or beta-cell hyperplasia in adult patients. J Clin Endocrinol Metab 92:1237–1244CrossRefPubMedGoogle Scholar
  44. Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455CrossRefPubMedGoogle Scholar
  45. Kazmierczak PM, Rominger A, Wenter V et al (2016) The added value of 68Ga-DOTA-TATE-PET to contrast-enhanced CT for primary site detection in CUP of neuroendocrine origin. Eur Radiol. doi: 10.1007/s00330-016-4475-3 Google Scholar
  46. Kjaer A, Knigge U (2015) Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors. Scand J Gastroenterol 50:740–747PubMedPubMedCentralGoogle Scholar
  47. Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7:728–734CrossRefPubMedGoogle Scholar
  48. Körner M, Christ E, Wild D et al (2012) Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications. Front Endocrinol 3:158CrossRefGoogle Scholar
  49. Kratochwil C, Stefanova M, Mavriopoulou E et al (2015) SUV of [68Ga]DOTATOC-PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol Imaging Biol 17:313–318CrossRefPubMedGoogle Scholar
  50. Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Investig Radiol 44:683–690CrossRefGoogle Scholar
  51. Kwekkeboom DJ, Krenning EP (2002) Somatostatin receptor imaging. Semin Nucl Med 32:84–91CrossRefPubMedGoogle Scholar
  52. Lee JR, Kim JS, Roh JL et al (2015) Detection of occult primary tumors in patients with cervical metastases of unknown primary tumors: comparison of 18F FDG PET/CT with contrast-enhanced CT or CT/MR imaging-prospective study. Radiology 274:764–771CrossRefPubMedGoogle Scholar
  53. Look Hong NJ, Petrella T, Chan K (2015) Cost-effectiveness analysis of staging strategies in patients with regionally metastatic melanoma. J Surg Oncol 111:423–430CrossRefPubMedGoogle Scholar
  54. Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72CrossRefPubMedGoogle Scholar
  55. Montravers F, Grahek D, Kerrou K et al (2006) Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 47:1455–1462PubMedGoogle Scholar
  56. Muros MA, Varsavsky M, Iglesias Rozas P et al (2009) Outcome of treating advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Clin Transl Oncol 11:48–53CrossRefPubMedGoogle Scholar
  57. Naswa N, Sharma P, Kumar A et al (2012) 68Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin Nucl Med 37:245–251CrossRefPubMedGoogle Scholar
  58. Öksüz MÖ, Winter L, Pfannenberg C et al (2014) Peptide receptor radionuclide therapy of neuroendocrine tumors with 90Y-DOTATOC: is treatment response predictable by pre-therapeutic uptake of 68Ga-DOTATOC? Diagn Interv Imaging 95:289–300CrossRefPubMedGoogle Scholar
  59. Pasquali C, Rubello D, Sperti C et al (1998) Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg 22:588–592CrossRefPubMedGoogle Scholar
  60. Pavel M, O'Toole D, Costa F et al (2016) ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 103:172–185CrossRefPubMedGoogle Scholar
  61. Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870CrossRefPubMedGoogle Scholar
  62. Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77CrossRefPubMedGoogle Scholar
  63. Rappeport ED, Hansen CP, Kjaer A et al (2006) Multidetector computed tomography and neuroendocrine pancreaticoduodenal tumors. Acta Radiol 47:248–256CrossRefPubMedGoogle Scholar
  64. Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793CrossRefPubMedGoogle Scholar
  65. Rindi G, Arnold R, Bosman FT et al (2010) Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman TF, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumours of the digestive system, 4th edn. International Agency for Research on cancer (IARC), Lyon, p 13Google Scholar
  66. Ruf J, Heuck F, Schiefer J et al (2010) Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109CrossRefPubMedGoogle Scholar
  67. Sadowski SM, Neychev V, Millo C et al (2016) Prospective study of 68Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-Entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol 34:588–596CrossRefPubMedGoogle Scholar
  68. Severi S, Nanni O, Bodei L et al (2013) Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:881–888CrossRefPubMedGoogle Scholar
  69. Singh S, Asa SL, Dey C et al (2016) Diagnosis and management of gastrointestinal neuroendocrine tumors: An evidence-based Canadian consensus. Cancer Treat Rev 2016; 47: 32–45Google Scholar
  70. Strosberg J, El-Haddad G, Wolin E et al (2017) Phase 3 trial of 177Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med 376:125–135CrossRefPubMedGoogle Scholar
  71. Tessonnier L, Sebag F, Ghander C et al (2010) Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab 95:303–307CrossRefPubMedGoogle Scholar
  72. Teunissen JJ, Kwekkeboom DJ, Valkema R et al (2011) Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer 18(Suppl 1):S27–S51CrossRefPubMedGoogle Scholar
  73. Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54:364–372CrossRefPubMedGoogle Scholar
  74. Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417CrossRefPubMedGoogle Scholar
  75. Wulfert S, Kratochwil C, Choyke PL et al (2014) Multimodal imaging for early functional response assessment of 90Y−/177Lu-DOTATOC peptide receptor targeted radiotherapy with DW-MRI and 68Ga-DOTATOC-PET/CT. Mol Imaging Biol 16:586–594CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Nuclear MedicineKlinikum StuttgartStuttgartGermany
  2. 2.Institute for Clinical RadiologyLudwig-Maximilians-University Hospital MunichMunichGermany

Personalised recommendations