pp 1-21 | Cite as

Contrast Enhancement at CT

  • Kazuo Awai
  • Toru Higaki
  • Fuminari Tatsugami
Part of the Medical Radiology book series


Contrast-enhanced CT studies are highly diagnostic and involve little physiological stress. To obtain the best results, protocols for contrast enhancement must take into consideration the patient factors, CM factors, and scan factors for contrast enhancement.


  1. Awai K, Hori S (2003) Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol 13:2155–2160PubMedCrossRefGoogle Scholar
  2. Awai K, Takada K, Onishi H et al (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763PubMedCrossRefGoogle Scholar
  3. Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230:142–150PubMedCrossRefGoogle Scholar
  4. Awai K, Hatcho A, Nakayama Y et al (2006) Simulation of aortic peak enhancement on MDCT using a contrast material flow phantom: feasibility study. AJR Am J Roentgenol 186:379–385PubMedCrossRefGoogle Scholar
  5. Awai K, Kanematsu M, Kim T et al (2015) The optimal body size index with which to determine iodine dose for hepatic dynamic CT: a prospective multicenter study. Radiology. doi: 10.1148/radiol.2015142941 Google Scholar
  6. Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227:809–816PubMedCrossRefGoogle Scholar
  7. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61PubMedCrossRefGoogle Scholar
  8. Bae KT, Heiken JP (2005) Scan and contrast administration principles of MDCT. Eur Radiol 15(Suppl 5):E46–E59PubMedCrossRefGoogle Scholar
  9. Bae KT, Heiken JP, Brink JA (1998a) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207:647–655PubMedCrossRefGoogle Scholar
  10. Bae KT, Heiken JP, Brink JA (1998b) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662PubMedCrossRefGoogle Scholar
  11. Bae KT, Heiken JP, Brink JA (1998c) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate–pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464PubMedCrossRefGoogle Scholar
  12. Bae KT, Seeck BA, Hildebolt CF et al (2008a) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190:777–784PubMedCrossRefGoogle Scholar
  13. Bae KT, Shah AJ, Shang SS et al (2008b) Aortic and hepatic contrast enhancement with abdominal 64-MDCT in pediatric patients: effect of body weight and iodine dose. AJR Am J Roentgenol 191:1589–1594PubMedCrossRefGoogle Scholar
  14. Baron R (1994) Understanding and optimizing use of contrast material for CT of the liver. AJR Am J Roentgenol 163:323–333PubMedCrossRefGoogle Scholar
  15. Behrendt FF, Bruners P, Keil S et al (2010) Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom. Eur J Radiol 73:688–693PubMedCrossRefGoogle Scholar
  16. Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758PubMedCrossRefGoogle Scholar
  17. Boer P (1984) Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol 247:F632–F636PubMedGoogle Scholar
  18. Cademartiri F, Mollet N, Van Der Lugt A et al (2004) Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 14:178–183PubMedCrossRefGoogle Scholar
  19. Cademartiri F, Mollet NR, Van Der Lugt A et al (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665PubMedCrossRefGoogle Scholar
  20. Cademartiri F, Mollet NR, Lemos PA et al (2006) Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. AJR Am J Roentgenol 187:W430–W433PubMedCrossRefGoogle Scholar
  21. Cademartiri F, Maffei E, Palumbo AA et al (2008) Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 18:576–583PubMedCrossRefGoogle Scholar
  22. Clark ZE, Bolus DN, Little MD et al (2015) Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: an intra-patient comparison. Abdom Imaging 40:852–858PubMedCrossRefGoogle Scholar
  23. Cohan RH, Sherman LS, Korobkin M et al (1995) Renal masses: assessment of corticomedullary-phase and nephrographic-phase CT scans. Radiology 196:445–451PubMedCrossRefGoogle Scholar
  24. De Simone G, Devereux RB, Daniels SR et al (1997) Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95:1837–1843PubMedCrossRefGoogle Scholar
  25. Diehl SJ, Lehmann KJ, Sadick M et al (1998) Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 206:373–378PubMedCrossRefGoogle Scholar
  26. Dorio PJ, Lee FT Jr, Henseler KP et al (2003) Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol 180:929–934PubMedCrossRefGoogle Scholar
  27. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311 discussion 312–303PubMedGoogle Scholar
  28. Fleischmann D (2005) How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol 15(Suppl 5):E60–E65PubMedCrossRefGoogle Scholar
  29. Fleischmann D (2010) CT angiography: injection and acquisition technique. Radiol Clin North Am 48:237–247 viiPubMedCrossRefGoogle Scholar
  30. Fleischmann D, Hittmair K (1999) Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete fourier transform. J Comput Assist Tomogr 23:474–484PubMedCrossRefGoogle Scholar
  31. Fleischmann D, Rubin GD, Bankier AA et al (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214:363–371PubMedCrossRefGoogle Scholar
  32. Fletcher JG, Wiersema MJ, Farrell MA et al (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 229:81–90PubMedCrossRefGoogle Scholar
  33. Foley WD (1989a) Dynamic hepatic CT. Radiology 170:617–622PubMedCrossRefGoogle Scholar
  34. Foley WD (1989b) Dynamic hepatic CT scanning. AJR Am J Roentgenol 152:272–274PubMedCrossRefGoogle Scholar
  35. Freeny PC, Gardner JC, Voningersleben G et al (1995) Hepatic helical CT: effect of reduction of iodine dose of intravenous contrast material on hepatic contrast enhancement. Radiology 197:89–93PubMedCrossRefGoogle Scholar
  36. Furuta A, Ito K, Fujita T et al (2004) Hepatic enhancement in multiphasic contrast-enhanced MDCT: comparison of high- and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR Am J Roentgenol 183:157–162PubMedCrossRefGoogle Scholar
  37. Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235PubMedGoogle Scholar
  38. Haage P, Schmitz-Rode T, Hubner D et al (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053PubMedCrossRefGoogle Scholar
  39. Hanninen EL, Vogl TJ, Felfe R et al (2000) Detection of focal liver lesions at biphasic spiral CT: randomized double-blind study of the effect of iodine concentration in contrast materials. Radiology 216:403–409PubMedCrossRefGoogle Scholar
  40. Heiken JP, Brink JA, Mcclennan BL et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357PubMedCrossRefGoogle Scholar
  41. Herts BR, Paushter DM, Einstein DM et al (1995) Use of contrast material for spiral CT of the abdomen: comparison of hepatic enhancement and vascular attenuation for three different contrast media at two different delay times. AJR Am J Roentgenol 164:327–331PubMedCrossRefGoogle Scholar
  42. Ho LM, Nelson RC, Delong DM (2007) Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 243:431–437PubMedCrossRefGoogle Scholar
  43. Honda H, Onitsuka H, Yasumori K et al (1993) Intrahepatic peripheral cholangiocarcinoma: two-phased dynamic incremental CT and pathologic correlation. J Comput Assist Tomogr 17:397–402PubMedCrossRefGoogle Scholar
  44. Hopper KD, Mosher TJ, Kasales CJ et al (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205:269–271PubMedCrossRefGoogle Scholar
  45. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435PubMedCrossRefGoogle Scholar
  46. Irie T, Kajitani M, Yamaguchi M et al (2002) Contrast-enhanced CT with saline flush technique using two automated injectors: how much contrast medium does it save? J Comput Assist Tomogr 26:287–291PubMedCrossRefGoogle Scholar
  47. Itai Y, Ohtomo K, Kokubo T et al (1986) CT of hepatic masses: significance of prolonged and delayed enhancement. AJR Am J Roentgenol 146:729–733PubMedCrossRefGoogle Scholar
  48. Itoh S, Ikeda M, Achiwa M et al (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69PubMedGoogle Scholar
  49. Iyama Y, Nakaura T, Yokoyama K et al (2016a) Low-contrast and low-radiation dose protocol in cardiac computed tomography: usefulness of low tube voltage and knowledge-based iterative model reconstruction algorithm. J Comput Assist Tomogr 40(6):941–947PubMedCrossRefGoogle Scholar
  50. Iyama Y, Nakaura T, Yokoyama K et al (2016b) Impact of knowledge-based iterative model reconstruction in abdominal dynamic CT with low tube voltage and low contrast dose. AJR Am J Roentgenol 206:687–693PubMedCrossRefGoogle Scholar
  51. Jana M, Gamanagatti SR, Kumar A (2010) Case series: CT scan in cardiac arrest and imminent cardiogenic shock. Indian J Radiol Imaging 20:150–153PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kidoh M, Nakaura T, Awai K et al (2013a) Low-contrast dose protection protocol for diagnostic computed tomography in patients at high-risk for contrast-induced nephropathy. J Comput Assist Tomogr 37:289–296PubMedCrossRefGoogle Scholar
  53. Kidoh M, Nakaura T, Awai K et al (2013b) Novel connecting tube for saline chaser in contrast-enhanced CT: the effect of spiral flow of saline on contrast enhancement. Eur Radiol 23:3213–3218PubMedCrossRefGoogle Scholar
  54. Kidoh M, Nakaura T, Oda S et al (2013c) Contrast enhancement during hepatic computed tomography: effect of total body weight, height, body mass index, blood volume, lean body weight, and body surface area. J Comput Assist Tomogr 37:159–164PubMedCrossRefGoogle Scholar
  55. Kidoh M, Nakaura T, Nakamura S et al (2014) Contrast material and radiation dose reduction strategy for triple-rule-out cardiac CT angiography: feasibility study of non-ECG-gated low kVp scan of the whole chest following coronary CT angiography. Acta Radiol 55:1186–1196PubMedCrossRefGoogle Scholar
  56. Kim DJ, Kim TH, Kim SJ et al (2008) Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 246:110–115PubMedCrossRefGoogle Scholar
  57. Kondo H, Kanematsu M, Goshima S et al (2011) Aortic and hepatic enhancement at multidetector CT: evaluation of optimal iodine dose determined by lean body weight. Eur J Radiol 80:e273–e277PubMedCrossRefGoogle Scholar
  58. Konig M, Bultmann E, Bode-Schnurbus L et al (2007) Image quality in CT perfusion imaging of the brain. The role of iodine concentration. Eur Radiol 17:39–47PubMedCrossRefGoogle Scholar
  59. Lee CH, Goo JM, Bae KT et al (2007) CTA contrast enhancement of the aorta and pulmonary artery: the effect of saline chase injected at two different rates in a canine experimental model. Invest Radiol 42:486–490PubMedCrossRefGoogle Scholar
  60. Loubeyre P, Debard I, Nemoz C et al (2000) Using thoracic helical CT to assess iodine concentration in a small volume of nonionic contrast medium during vascular opacification: a prospective study. AJR Am J Roentgenol 174:783–787PubMedCrossRefGoogle Scholar
  61. Lu DS, Vedantham S, Krasny RM et al (1996) Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 199:697–701PubMedCrossRefGoogle Scholar
  62. Marchiano A, Spreafico C, Lanocita R et al (2005) Does iodine concentration affect the diagnostic efficacy of biphasic spiral CT in patients with hepatocellular carcinoma? Abdom Imaging 30:274–280PubMedCrossRefGoogle Scholar
  63. Masuda T, Funama Y, Nakaura T et al (2015) Delivering the saline chaser via a spiral flow-generating tube improves arterial enhancement for computed tomography angiography of the lower extremities. J Comput Assist Tomogr 39:962–968PubMedCrossRefGoogle Scholar
  64. Masuda T, Funama Y, Nakaura T et al (2016) Comparison of contrast enhancement on CTA images of the lower extremity of dialysis- and non-dialysis patients with suspected peripheral artery disease. AJR Am J Roentgenol in pressGoogle Scholar
  65. Matoba M, Yokota H, Kuga G et al (2005) Influence of saline flushing on the optimal temporal window for CT of the liver using a time-density analysis. Radiat Med 23:557–562PubMedGoogle Scholar
  66. Mccollough CH, Leng S, Yu L et al (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mckinstry D, Rommel AJ, Sugerman AA (1984) Pharmacokinetics, metabolism, and excretion of iopamidol in healthy subjects. Invest Radiol 19:S171–S174CrossRefGoogle Scholar
  68. Mcnulty NJ, Francis IR, Platt JF et al (2001) Multi–detector row helical CT of the pancreas: effect of contrast-enhanced multiphasic imaging on enhancement of the pancreas, peripancreatic vasculature, and pancreatic adenocarcinoma. Radiology 220:97–102PubMedCrossRefGoogle Scholar
  69. Metser U, Goldstein MA, Chawla TP et al (2012) Detection of urothelial tumors: comparison of urothelial phase with excretory phase CT urography–a prospective study. Radiology 264:110–118PubMedCrossRefGoogle Scholar
  70. Nakaura T, Awai K, Maruyama N et al (2011a) Abdominal dynamic CT in patients with renal dysfunction: contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT. Radiology 261:467–476PubMedCrossRefGoogle Scholar
  71. Nakaura T, Awai K, Oda S et al (2011b) Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. Am J Roentgenol 196(6):1332–1338.Google Scholar
  72. Nakaura T, Awai K, Oda S et al (2011c) Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR Am J Roentgenol 196:1332–1338PubMedCrossRefGoogle Scholar
  73. Nakaura T, Awai K, Oda S et al (2011d) A low-kilovolt (peak) high-tube current technique improves venous enhancement and reduces the radiation dose at indirect multidetector-row CT venography: initial experience. J Comput Assist Tomogr 35:141–147PubMedCrossRefGoogle Scholar
  74. Nakaura T, Awai K, Yanaga Y et al (2011e) Low-dose contrast protocol using the test bolus technique for 64-detector computed tomography coronary angiography. Jpn J Radiol 29:457–465PubMedCrossRefGoogle Scholar
  75. Nakaura T, Nakamura S, Maruyama N et al (2012) Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 264:445–454PubMedCrossRefGoogle Scholar
  76. Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  77. Namimoto T, Oda S, Utsunomiya D et al (2012) Improvement of image quality at low-radiation dose and low-contrast material dose abdominal CT in patients with cirrhosis: intraindividual comparison of low tube voltage with iterative reconstruction algorithm and standard tube voltage. J Comput Assist Tomogr 36:495–501PubMedCrossRefGoogle Scholar
  78. Oda S, Utsunomiya D, Funama Y et al (2011) A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Radiol 18:991–999PubMedCrossRefGoogle Scholar
  79. Onishi H, Murakami T, Kim T, Hori M, Osuga K, Tatsumi M, Higashihara H, Maeda N, Tsuboyama T, Nakamoto A, Tomoda K, Tomiyama N.Abdominal (2011) multi-detector row CT: effectiveness of determining contrast medium dose on basis of body surface area. Eur J Radiol. Dec; 80(3):643–7. doi:  10.1016/j.ejrad.2010.08.037. Epub 2010 Sep 23.
  80. Saunders HS, Dyer RB, Shifrin RY et al (1995) The CT nephrogram: implications for evaluation of urinary tract disease. Radiographics 15:1069–1085 discussion 1086–1068PubMedCrossRefGoogle Scholar
  81. Sawyer M, Ratain MJ (2001) Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drugs 19:171–177PubMedCrossRefGoogle Scholar
  82. Schoellnast H, Tillich M, Deutschmann HA et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27:847–853PubMedCrossRefGoogle Scholar
  83. Schoellnast H, Tillich M, Deutschmann HA et al (2004a) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664PubMedCrossRefGoogle Scholar
  84. Schoellnast H, Tillich M, Deutschmann MJ et al (2004b) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26PubMedCrossRefGoogle Scholar
  85. Schoellnast H, Deutschmann HA, Fritz GA et al (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939PubMedCrossRefGoogle Scholar
  86. Shinagawa M, Uchida M, Ishibashi M et al (2003) Assessment of pancreatic CT enhancement using a high concentration of contrast material. Radiat Med 21:74–79PubMedGoogle Scholar
  87. Shuman WP, Chan KT, Busey JM et al (2016) Dual-energy CT Aortography with 50% reduced iodine dose versus single-energy CT aortography with standard iodine dose. Acad Radiol 23:611–618PubMedCrossRefGoogle Scholar
  88. Sultana S, Awai K, Nakayama Y et al (2007) Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 243:140–147PubMedCrossRefGoogle Scholar
  89. Taguchi N, Oda S, Utsunomiya D et al (2016) Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50% in patients at risk for contrast-induced nephropathy. Eur Radiol . 2016 May 30. [Epub ahead of print].Google Scholar
  90. Takayasu K, Ikeya S, Mukai K et al (1990) CT of hilar cholangiocarcinoma: late contrast enhancement in six patients. AJR Am J Roentgenol 154:1203–1206PubMedCrossRefGoogle Scholar
  91. Tanikake M, Shimizu T, Narabayashi I et al (2003) Three-dimensional CT angiography of the hepatic artery: use of multi-detector row helical CT and a contrast agent. Radiology 227:883–889PubMedCrossRefGoogle Scholar
  92. Tatsugami F, Matsuki M, Kani H et al (2006) Effect of saline pushing after contrast material injection in abdominal multidetector computed tomography with the use of different iodine concentrations. Acta Radiol 47:192–197PubMedCrossRefGoogle Scholar
  93. Tatsugami F, Matsuki M, Inada Y et al (2007) Usefulness of saline pushing in reduction of contrast material dose in abdominal CT: evaluation of time-density curve for the aorta, portal vein and liver. Br J Radiol 80:231–234PubMedCrossRefGoogle Scholar
  94. Taylor HL, Brozek J, Keys A (1952) Basal cardiac function and body composition with special reference to obesity. J Clin Invest 31:976–983PubMedPubMedCentralCrossRefGoogle Scholar
  95. Verbraecken J, Van De Heyning P, De Backer W et al (2006) Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 55:515–524PubMedCrossRefGoogle Scholar
  96. Vignaux O, Legmann P, Coste J et al (1999) Cirrhotic liver enhancement on dual-phase helical CT: comparison with noncirrhotic livers in 146 patients. AJR Am J Roentgenol 173:1193–1197PubMedCrossRefGoogle Scholar
  97. Vignaux O, Gouya H, Augui J et al (2002) Hepatofugal portal flow in advanced liver cirrhosis with spontaneous portosystemic shunts: effects on parenchymal hepatic enhancement at dual-phase helical CT. Abdom Imaging 27:536–540PubMedCrossRefGoogle Scholar
  98. Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material–a prospective randomized study. Radiology 216:718–723PubMedCrossRefGoogle Scholar
  99. Yanaga Y, Awai K, Nakayama Y et al (2007) Optimal dose and injection duration (injection rate) of contrast material for depiction of hypervascular hepatocellular carcinomas by multidetector CT. Radiat Med 25:278–288PubMedCrossRefGoogle Scholar
  100. Yanaga Y, Awai K, Nakaura T et al (2008) Optimal contrast dose for depiction of hypervascular hepatocellular carcinoma at dynamic CT using 64-MDCT. AJR Am J Roentgenol 190:1003–1009PubMedCrossRefGoogle Scholar
  101. Yanaga Y, Awai K, Funama Y et al (2009a) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. AJR Am J Roentgenol 193:W220–W229PubMedCrossRefGoogle Scholar
  102. Yanaga Y, Awai K, Nakaura T et al (2009b) Effect of contrast injection protocols with dose adjusted to the estimated lean patient body weight on aortic enhancement at CT angiography. AJR Am J Roentgenol 192:1071–1078PubMedCrossRefGoogle Scholar
  103. Yanaga Y, Awai K, Nakaura T, Utsunomiya D, Oda S, Hirai T, Yamashita Y. (2010) Contrast material injection protocol with the dose adjusted to the body surface area for MDCT aortography. AJR Am J Roentgenol. Apr; 194(4):903-8. doi:  10.2214/AJR.09.3460.
  104. Yanaga Y, Awai K, Nakaura T et al (2011) Hepatocellular carcinoma in patients weighing 70 kg or less: initial trial of compact-bolus dynamic CT with low-dose contrast material at 80 kVp. AJR Am J Roentgenol 196:1324–1331PubMedCrossRefGoogle Scholar
  105. Younathan C, Kaude J, Cook M et al (1994) Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol 163:969–971PubMedCrossRefGoogle Scholar
  106. Yu L, Leng S, Mccollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Diagnostic RadiologyInstitute of Biomedical and Health Sciences, Hiroshima UniversityHigashihiroshimaJapan
  2. 2.Diagnostic Radiology, Institute of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations