Skip to main content

Technical Innovations and Concepts in Coronary CT

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3252 Accesses

Abstract

By virtue of increased clinical demand, coronary CT angiography (cCTA) has experienced a rapid evolution to overcome the diagnostic challenges in cCTA. This has led to advancements in CT scanner technology, image acquisition techniques, data reconstruction as well as image post-processing. Furthermore, the potential gain of additional information out of cCTA data such as cardiac function parameters led to the development of sophisticated solutions to fulfill these needs. However, although image quality has increased significantly over the last couple of years, the positive predictive value for the prediction of hemodynamic significant stenosis in cCTA remains rather low. To overcome this limitation, innovative approaches like cardiac perfusion, transluminal attenuation gradient, and CT fractional flow reserve have been developed.

This chapter will provide an overview on the most crucial innovations in cCTA, explain their technical background, demonstrate their current status, and point out their major limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L et al (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. Journal of Cardiovascular Computed Tomography 3(3):190–204

    PubMed  Google Scholar 

  • Abudurexiti A, Kameda M, Sato E, Abderyim P, Enomoto T, Watanabe M et al (2010) Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector. Radiol Phys Technol 3(2):127–135

    PubMed  Google Scholar 

  • Arnoldi E, Lee YS, Ruzsics B, Weininger M, Spears JR, Rowley CP et al (2011) CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr 5(6):421–429

    PubMed  Google Scholar 

  • Bamberg F, Hinkel R, Schwarz F, Sandner TA, Baloch E, Marcus R et al (2012) Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Investig Radiol 47(1):71–77

    Google Scholar 

  • Bamberg F, Marcus RP, Becker A, Hildebrandt K, Bauner K, Schwarz F et al (2014) Dynamic myocardial CT perfusion imaging for evaluation of myocardial ischemia as determined by MR imaging. JACC Cardiovasc Imaging 7(3):267–277

    PubMed  Google Scholar 

  • Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28(2):94–108

    PubMed  Google Scholar 

  • Bogot NR, Fingerle A, Shaham D, Nissenbaum I, Sosna J (2011) Image quality of low-energy pulmonary CT angiography: comparison with standard CT. AJR Am J Roentgenol 197(2):W273–W278

    PubMed  Google Scholar 

  • Choi J-H, Min JK, Labounty TM, Lin FY, Mendoza DD, Shin DH et al (2011) Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging 4(11):1149–1157

    PubMed  Google Scholar 

  • Chow BJW, Kass M, Gagné O, Chen L, Yam Y, Dick A et al (2011) Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol 57(11):1280–1288

    PubMed  Google Scholar 

  • Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683

    PubMed  Google Scholar 

  • Curry TS, Dowdey JE, Murry RC (1990) Christensen’s physics of diagnostic radiology, 4th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Desjardins B, Kazerooni EA (2004) ECG-gated cardiac CT. Am J Roentgen Am Roentgen Ray Soc 182(4):993–1010

    Google Scholar 

  • Dewey M, Müller M, Eddicks S, Schnapauff D, Teige F, Rutsch W et al (2006) Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography, and two-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol. 48(10):2034–2044

    PubMed  Google Scholar 

  • Di Cesare E, Gennarelli A, Di Sibio A, Felli V, Perri M, Splendiani A et al (2016) 320-row coronary computed tomography angiography (CCTA) with automatic exposure control (AEC): effect of 100 kV versus 120 kV on image quality and dose exposure. Radiol Med Springer Milan 121(8):618–625

    Google Scholar 

  • Ebersberger U, Marcus RP, Schoepf UJ, Lo GG, Wang Y, Blanke P et al (2014) Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software. Eur Radiol. Springer Berlin Heidelberg 24(1):191–9

    Google Scholar 

  • Fujimura T, Miura T, Nao T, Yoshimura M, Nakashima Y, Okada M et al (2014) Dual-source computed tomography coronary angiography in patients with high heart rate. Heart Vessel 29(4):443–448

    Google Scholar 

  • George RT, Mehra VC, Chen MY, Kitagawa K, Arbab-Zadeh A, Miller JM et al (2014) Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study. Radiol Radiol Soc North Am 272(2):407–416

    Google Scholar 

  • Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M (2015) Meta-Analysis of Diagnostic Performance of Coronary Computed Tomography Angiography, Computed Tomography Perfusion, and Computed Tomography-Fractional Flow Reserve in Functional Myocardial Ischemia Assessment Versus Invasive Fractional Flow Reserve. Am J Cardiol 116(9):1469–1478

    PubMed  PubMed Central  Google Scholar 

  • Greif M, Ziegler von F, Bamberg F, Tittus J, Schwarz F, D'Anastasi M et al (2013) CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart 99(14):1004–1011

    PubMed  Google Scholar 

  • Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507

    CAS  PubMed  Google Scholar 

  • Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P et al (2012) Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging. 5(5):484–493

    PubMed  Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Phys 239(1):H14–H21

    CAS  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA et al (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11):2153–2169

    CAS  PubMed  Google Scholar 

  • Kim HJ, Jansen KE, Taylor CA (2010a) Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow. Ann Biomed Eng 38(7):2314–2330

    CAS  PubMed  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010b) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209

    CAS  PubMed  Google Scholar 

  • Kondo T, Matsutani H, Groarke J, Takamura K, Fujimoto S, Rybicki FJ et al (2014) Technical note: Electrocardiogram electrode repositioning for 320-row coronary CT angiography in patients with regular and recurrent premature ventricular contractions. J Cardiovasc Comput Tomogr 8(1):13–18

    PubMed  Google Scholar 

  • Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997

    PubMed  Google Scholar 

  • Koo HJ, Yang DH, Kim Y-H, Kang J-W, Kang S-J, Kweon J et al (2016) CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging. Springer Netherlands 32(Suppl 1):1–19

    Google Scholar 

  • Leipsic J, Yang T-H, Thompson A, Koo B-K, Mancini GBJ, Taylor C et al (2014) CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. AJR Am J Roentgenol 202(5):989–994

    PubMed  Google Scholar 

  • Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52(8):636–643

    PubMed  Google Scholar 

  • Meinel FG, De Cecco CN, Schoepf UJ, Nance JW, Silverman JR, Flowers BA et al (2014) First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiolo Radiologic Soc North Am 270(3):708–716

    Google Scholar 

  • Menke J, Unterberg-Buchwald C, Staab W, Sohns JM, Seif Amir Hosseini A, Schwarz A (2013) Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: Meta-analysis of diagnostic accuracy, image quality, and radiation dose. Am Heart J 165(2):154–163 e3

    PubMed  Google Scholar 

  • Meyer M, Henzler T (2016) Der Stellenwert der Herz-CT in der Diagnostik der koronaren Herzerkrankung – Update (accepted for publication). Radiologe

    Google Scholar 

  • Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Leidecker C, Allmendinger T et al (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology. Radiological Society of North America 273(2):373–382

    Google Scholar 

  • Moscariello A, Takx RAP, Schoepf UJ, Renker M, Zwerner PL, O’Brien TX et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21(10):2130–2138

    PubMed  Google Scholar 

  • Naoum C, Blanke P, Leipsic J (2015) Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomog 9(4):255–263

    Google Scholar 

  • Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155

    PubMed  Google Scholar 

  • Pelgrim GJ, Dorrius M, Xie X, Dekker den MAM, Schoepf UJ, Henzler T et al (2015) The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT. Eur J Radiol 84(12):2411–2420

    PubMed  Google Scholar 

  • Puchner SB, Ferencik M, Maurovich-Horvat P, Nakano M, Otsuka F, Kauczor H-U et al (2015) Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque--a comparison with histology. Eur Radiol 25(1):15–23

    PubMed  Google Scholar 

  • Raff GL, Chinnaiyan KM, Cury RC, Garcia MT, Hecht HS, Hollander JE et al (2014) SCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:254–271

    PubMed  Google Scholar 

  • Renker M, Nance JW, Schoepf UJ, O'Brien TX, Zwerner PL, Meyer M et al (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260(2):390–399

    PubMed  Google Scholar 

  • Rizvi A, Deaño RC, Bachman DP, Xiong G, Min JK, Truong QA (2015) Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr 9(1):1–12

    PubMed  Google Scholar 

  • Rossi A, Uitterdijk A, Dijkshoorn M, Klotz E, Dharampal A, van Straten M et al (2013) Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging. Oxford University Press 14(4):331–338

    Google Scholar 

  • Rossi A, Dharampal A, Wragg A, Davies LC, van Geuns R-J, Anagnostopoulos C et al (2014) Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: does it predict functionally significant coronary lesions? Eur Heart J Cardiovasc Imaging. The Oxford University Press 15(1):85–94

    Google Scholar 

  • Sato E, Oda Y, Abudurexiti A, Hagiwara O, Matsukiyo H, Osawa A et al (2012) Demonstration of enhanced iodine K-edge imaging using an energy-dispersive X-ray computed tomography system with a 25 mm/s-scan linear cadmium telluride detector and a single comparator. Appl Radiat Isot: Incl Data Instrum Methods Agric, Ind Med 70(5):831–836

    CAS  Google Scholar 

  • Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC et al (2014) Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging 7(4):374–386

    PubMed  PubMed Central  Google Scholar 

  • Takx RAP, Moscariello A, Schoepf UJ, Barraza JM, Nance JW, Bastarrika G et al (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81(4):e598–e604

    PubMed  Google Scholar 

  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13(5):625–640

    CAS  PubMed  Google Scholar 

  • Vliegenthart R, Henzler T, Moscariello A, Ruzsics B, Bastarrika G, Oudkerk M et al (2012) CT of coronary heart disease: Part 1, CT of myocardial infarction, ischemia, and viability. AJR Am J Roentgen Am Roentgen Ray Soc 198(3):531–547

    Google Scholar 

  • Williams MC, Newby DE (2016) CT myocardial perfusion imaging: current status and future directions. Clin Radiol Royal Coll Radiol 71:1–11

    Google Scholar 

  • Yang L, Zhou T, Zhang R, Xu L, Peng Z, Ding J et al (2014) Meta-analysis: diagnostic accuracy of coronary CT angiography with prospective ECG gating based on step-and-shoot, Flash and volume modes for detection of coronary artery disease. Eur Radiol 24(10):2345–2352

    PubMed  Google Scholar 

  • Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5(3):413–420

    CAS  PubMed  Google Scholar 

  • Zheng M, Wei M, Wen D, Zhao H, Liu Y, Li J et al (2015) Transluminal attenuation gradient in coronary computed tomography angiography for determining stenosis severity of calcified coronary artery: a primary study with dual-source CT. Eur Radiol 25(5):1219–1228

    PubMed  Google Scholar 

  • Zhou Y, Kassab GS, Molloi S (2002) In vivo validation of the design rules of the coronary arteries and their application in the assessment of diffuse disease. Phys Med Biol 47(6):977–993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Henzler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vogler, N., Meyer, M., Henzler, T. (2016). Technical Innovations and Concepts in Coronary CT. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_95

Download citation

  • DOI: https://doi.org/10.1007/174_2016_95

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics