Skip to main content

Challenges of Using 3 T MR Systems and Whole-Body MRI for Lung Imaging

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Ever since the clinical application of magnetic resonance (MR) imaging became an essential diagnostic tool, the lung has been a challenging area. Although many physicists and radiologists tried to assess different lung diseases as well as mediastinal and cardiac diseases by means of MR imaging during the 1980s and early 1990s, they could neither produce convincing image quality within a reasonable examination time nor demonstrate that MR imaging could serve as a substitute for computed tomography (CT), pulmonary angiography, and/or nuclear medicine studies. However, improvement of the 1.5-tesla (T) MR system and sequences, clinical application of new techniques such as parallel imaging, and utilization of more effective contrast media have continued since the late 1990s. These developments have made it possible to apply lung MR imaging to not only oncologic but also other pulmonary diseases, as well as to not only morphological but also functional assessment of various pulmonary and cardiopulmonary diseases. Moreover, these improvements have been continuing, resulting in the gradual shifting to the use of a higher magnetic strength field (≥3 T) for lung MR imaging during the 2000s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E (2002a) Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47:639–648

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Delli Castelli D, Terreno E (2002b) Novel pH-reporter MRI contrast agents. Angew Chem Int Ed Eng 41:4334–4336

    Article  CAS  Google Scholar 

  • Aime S, Delli Castelli D, Fedeli F, Terreno E (2002c) A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124:9364–9365

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Delli Castelli D, Terreno E (2005) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Eng 44:5513–5515

    Article  CAS  Google Scholar 

  • Albert TS, Akahane M, Parienty I, Yellin N, Catalá V, Alomar X, Prot A, Tomizawa N, Xue H, Katabathina VS, Lopera JE, Jin Z (2015) An international multicenter comparison of time-SLIP unenhanced MR angiography and contrast-enhanced CT angiography for assessing renal artery stenosis: the renal artery contrast-free trial. AJR Am J Roentgenol 204:182–188

    Article  PubMed  Google Scholar 

  • Alsop DC, Hatabu H, Bonnet M, Listerud J, Gefter W (1995) Multi-slice, breathhold imaging of the lung with submillisecond echo times. Magn Reson Med 33:678–682

    Article  CAS  PubMed  Google Scholar 

  • Bauman G, Scholz A, Rivoire J, Terekhov M, Friedrich J, de Oliveira A, Semmler W, Schreiber LM, Puderbach M (2013a) Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 69:229–237

    Article  CAS  PubMed  Google Scholar 

  • Bauman G, Puderbach M, Heimann T, Kopp-Schneider A, Fritzsching E, Mall MA, Eichinger M (2013b) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377

    Article  PubMed  Google Scholar 

  • Bergin CJ, Pauly JM, Macovski A (1991a) Lung parenchyma: projection reconstruction MR imaging. Radiology 179:777–781

    Article  CAS  PubMed  Google Scholar 

  • Bergin CJ, Glover GH, Pauly JM (1991b) Lung parenchyma: magnetic susceptibility in MR imaging. Radiology 180:845–848

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PA, Andrew ER (1978) RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23:630–643

    Article  CAS  PubMed  Google Scholar 

  • Bryant RG (1996) The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct 25:29–53

    Article  CAS  PubMed  Google Scholar 

  • Buhaescu I, Izzedine H (2008) Gadolinium-induced nephrotoxicity. Int J Clin Pract 62:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:22932–22352

    Article  CAS  Google Scholar 

  • Carr HY (1958) Steady-state free precession in nuclear magnetic resonance. Phys Rev 112:1693–1701

    Article  CAS  Google Scholar 

  • De León-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD (2015) Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 42:545–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Donahue MJ, Donahue PC, Rane S, Thompson CR, Strother MK, Scott AO, Smith SA (2016) Assessment of lymphatic impairment and interstitial protein accumulation in patients with breast cancer treatment-related lymphedema using CEST MRI. Magn Reson Med 75:345–355

    Article  CAS  PubMed  Google Scholar 

  • Dournes G, Grodzki D, Macey J, Girodet PO, Fayon M, Chateil JF, Montaudon M, Berger P, Laurent F (2015) Quiet Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. Radiology 276:258–265

    Article  PubMed  Google Scholar 

  • Duewell SH, Ceckler TL, Ong K, Wen H, Jaffer FA, Chesnick SA, Balaban RS (1995) Musculoskeletal MR imaging at 4 T and at 1.5 T: comparison of relaxation times and image contrast. Radiology 196:551–555

    Article  CAS  PubMed  Google Scholar 

  • Duewell S, Wolff SD, Wen H, Balaban RS, Jezzard P (1996) MR imaging contrast in human brain tissue: assessment and optimization at 4 T. Radiology 199:780–786

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Yucel EK, Vock P, Souza SP, Terrier F, Steinberg FL, Wegmuller H (1990) Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr 14:779–784

    Article  CAS  PubMed  Google Scholar 

  • Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    Article  CAS  PubMed  Google Scholar 

  • Failo R, Wielopolski PA, Tiddens HA, Hop WC, Mucelli RP, Lequin MH (2009) Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn Reson Med 61:299–306

    Article  PubMed  Google Scholar 

  • Fernandez-Seara MA, Wehrli FW (2000) Postprocessing technique to correct for background gradients in image-based R*(2) measurements. Magn Reson Med 44:358–366

    Article  CAS  PubMed  Google Scholar 

  • Filli L, Ghafoor S, Kenkel D, Liu W, Weiland E, Andreisek G, Frauenfelder T, Runge VM, Boss A (2016) Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the breast. Eur J Radiol 85:274–278

    Article  PubMed  Google Scholar 

  • Fink C, Puderbach M, Biederer J, Fabel M, Dietrich O, Kauczor HU, Reiser MF, Schönberg SO (2007) Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Investig Radiol 42:377–383

    Article  Google Scholar 

  • Frydrychowicz A, Russe MF, Bock J, Stalder AF, Bley TA, Harloff A, Markl M (2010) Comparison of gadofosveset trisodium and gadobenate dimeglumine during time-resolved thoracic MR angiography at 3 T. Acad Radiol 17:1394–1400

    Article  PubMed  Google Scholar 

  • Gillies RJ, Bhujwalla ZM, Evelhoch J, Garwood M, Neeman M, Robinson SP, Sotak CH, Van Der Sanden B (2000) Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeney N, Bulte JW, Duyn J, Bryant LH Jr, van Zijl PC (2001) Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc 123:8628–8629

    Article  CAS  PubMed  Google Scholar 

  • Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45

    Article  CAS  PubMed  Google Scholar 

  • Hatabu H, Gaa J, Tadamura E, Edinburgh KJ, Stock KW, Garpestad E, Edelman RR (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29:152–159

    Article  CAS  PubMed  Google Scholar 

  • Hatabu H, Tadamura E, Prasad PV, Chen Q, Buxton R, Edelman RR (2000) Noninvasive pulmonary perfusion imaging by STAR-HASTE sequence. Magn Reson Med 44:808–812

    Article  CAS  PubMed  Google Scholar 

  • Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64

    Article  CAS  PubMed  Google Scholar 

  • Heusch P, Buchbender C, Köhler J, Nensa F, Gauler T, Gomez B, Reis H, Stamatis G, Kühl H, Hartung V, Heusner TA (2014) Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med 55:373–378

    Article  CAS  PubMed  Google Scholar 

  • Jezzard P, Duewell S, Balaban RS (1996) MR relaxation times in human brain: measurement at 4 T. Radiology 199:773–779

    Article  CAS  PubMed  Google Scholar 

  • Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250

    Article  PubMed  Google Scholar 

  • Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumors at 3 T. Magn Reson Med 56:585–592

    Article  PubMed  Google Scholar 

  • Kjørstad Å, Corteville DM, Fischer A, Henzler T, Schmid-Bindert G, Zöllner FG, Schad LR (2014) Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI. Magn Reson Med 72:558–562

    Article  PubMed  Google Scholar 

  • Kurata Y, Kido A, Fujimoto K, Kiguchi K, Takakura K, Moribata Y, Shitano F, Himoto Y, Fushimi Y, Okada T, Togashi K (2016) Optimization of non-contrast-enhanced MR angiography of the renal artery with three-dimensional balanced steady-state free-precession and time-spatial labeling inversion pulse (time-SLIP) at 3 T MRI, in relation to age and blood velocity. Abdom Radiol (NY) 41:119–126

    Article  Google Scholar 

  • Laub GA (1995) Time-of-flight method of MR angiography. Magn Reson Imaging Clin N Am 3:391–398

    Article  CAS  PubMed  Google Scholar 

  • Lauffer RB (1990) Magnetic resonance contrast media: principles and progress. Magn Reson Q 6:65–84

    CAS  PubMed  Google Scholar 

  • Ley-Zaporozhan J, Ley S, Eberhardt R, Kauczor HU, Heussel CP (2010) Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur J Radiol 73:43–49

    Article  PubMed  Google Scholar 

  • Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londy FJ, Lowe S, Stein PD, Weg JG, Eisner RL, Leeper KV, Woodard PK, Sostman HD, Jablonski KA, Fowler SE, Hales CA, Hull RD, Gottschalk A, Naidich DP, Chenevert TL (2012) Comparison of 1.5 and 3.0 T for contrast-enhanced pulmonary magnetic resonance angiography. Clin Appl Thromb Hemost 18:134–139

    Article  PubMed  Google Scholar 

  • Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343

    Article  CAS  PubMed  Google Scholar 

  • Masaryk TJ, Laub GA, Modic MT, Ross JS, Haacke EM (1990) Carotid-CNS MR flow imaging. Magn Reson Med 14:308–314

    Article  CAS  PubMed  Google Scholar 

  • Mayo JR, MacKay A, Müller NL (1992) MR imaging of the lungs: value of short TE spin-echo pulse sequences. AJR Am J Roentgenol 159:951–956

    Article  CAS  PubMed  Google Scholar 

  • McMahon MT, Gilad AA, DeLiso MA, Berman SM, Bulte JW, van Zijl PC (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H (2000) Non-contrast-enhanced MRA using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 12:776–783

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J (2003) Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology 227:890–896

    Article  PubMed  Google Scholar 

  • Miyazaki M, Akahane M (2012) Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 35:1–19

    Article  PubMed  Google Scholar 

  • Müller NL, Mayo JR, Zwirewich CV (1992) Value of MR imaging in the evaluation of chronic infiltrative lung diseases: comparison with CT. AJR Am J Roentgenol 158:1205–1209

    Article  PubMed  Google Scholar 

  • Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 tesla. Magn Reson Med 51:655–660

    Article  PubMed  Google Scholar 

  • Nishimura DG, Macovski A, Pauly JM, Conolly SM (1987) MR angiography by selective inversion recovery. Magn Reson Med 4:193–202

    Article  CAS  PubMed  Google Scholar 

  • Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 4:978–982

    Article  Google Scholar 

  • Ohno Y, Koyama H, Nogami M, Takenaka D, Yoshikawa T, Yoshimura M, Kotani Y, Nishimura Y, Higashino T, Sugimura K (2007) Whole-body MR imaging vs FDG-PET: comparison of accuracy of M-stage diagnosis for lung cancer patients. J Magn Reson Imaging 26:498–509

    Article  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, Matsumoto S, Kotani Y, Sugimura K (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment--utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654

    Article  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Takahashi M, Van Cauteren M, Sugimura K (2011) T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol 197:W279–W285

    Article  PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Takenaka D, Seki S, Tsubakimoto M, Sugimura K (2013a) Comparison of the utility of whole-body MRI with and without contrast-enhanced Quick 3D and double RF fat suppression techniques, conventional whole-body MRI, PET/CT and conventional examination for assessment of recurrence in NSCLC patients. Eur J Radiol 82:2018–2027

    Article  PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Takenaka D, Takahashi M, Yoshikawa T, Matsumoto S, Obara M, van Cauteren M, Sugimura K (2013b) Pulmonary MR imaging with ultra-short TEs: utility for disease severity assessment of connective tissue disease patients. Eur J Radiol 82:1359–1365

    Article  PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Seki S, Sugimura K (2014a) Journal Club: Comparison of assessment of preoperative pulmonary vasculature in patients with non-small cell lung cancer by non-contrast- and 4D contrast-enhanced 3-T MR angiography and contrast-enhanced 64-MDCT. AJR Am J Roentgenol 202:493–506

    Article  PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Seki S, Obara M, van Cauteren M, Takahashi M, Sugimura K (2014b) Pulmonary 3 T MRI with ultrashort TEs: influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers. J Magn Reson Imaging 39:988–997

    Article  PubMed  Google Scholar 

  • Ohno T, Isoda H, Furuta A, Togashi K (2015a) Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: comparison at 1.5 Tesla and 3 Tesla. Acta Radiol Open 4: 2058460115584110

    Article  Google Scholar 

  • Ohno Y, Seki S, Koyama H, Yoshikawa T, Matsumoto S, Takenaka D, Kassai Y, Yui M, Sugimura K (2015b) 3D ECG- and respiratory-gated non-contrast-enhanced (CE) perfusion MRI for postoperative lung function prediction in non-small-cell lung cancer patients: a comparison with thin-section quantitative computed tomography, dynamic CE-perfusion MRI, and perfusion scan. J Magn Reson Imaging 42:340–353

    Article  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Yoshikawa T, Takenaka D, Seki S, Yui M, Yamagata H, Aoyagi K, Matsumoto S, Sugimura K (2015c) Three-way Comparison of Whole-Body MR, Coregistered Whole-Body FDG PET/MR, and Integrated Whole-Body FDG PET/CT Imaging: TNM and Stage Assessment Capability for Non-Small Cell Lung Cancer Patients. Radiology 275:849–861

    Article  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Yoshikawa T, Takenaka D, Kassai Y, Yui M, Matsumoto S, Sugimura K (2015d) Diffusion-weighted MR imaging using FASE sequence for 3 T MR system: preliminary comparison of capability for N-stage assessment by means of diffusion-weighted MR imaging using EPI sequence, STIR FASE imaging and FDG PET/CT for non-small cell lung cancer patients. Eur J Radiol 84:2321–2331

    Article  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Yoshikawa T, Seki S, Takenaka D, Yui M, Lu A, Miyazaki M, Sugimura K (2016a) Pulmonary high-resolution ultrashort TE MR imaging: comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging 43:512–532

    Article  PubMed  Google Scholar 

  • Ohno Y, Yui M, Koyama H, Yoshikawa T, Seki S, Ueno Y, Miyazaki M, Ouyang C, Sugimura K (2016b) Chemical exchange saturation transfer MR imaging: preliminary results for differentiation of malignant and benign thoracic lesions. Radiology 279:578–589

    Article  PubMed  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    Article  CAS  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  • Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH (2006) Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging 23:87–91

    Article  PubMed  Google Scholar 

  • Roberts DA, Gefter WB, Hirsch JA, Rizi RR, Dougherty L, Lenkinski RE, Leigh JS Jr, Schnall MD (1999) Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging--preliminary results in healthy volunteers. Radiology 212:890–895

    Article  CAS  PubMed  Google Scholar 

  • Rosenkrantz AB, Parikh N, Kierans AS, Kong MX, Babb JS, Taneja SS, Ream JM (2016) Prostate cancer detection using computed very high b-value diffusion-weighted imaging: How High Should We Go? Acad Radiol 23:704–711

    Article  PubMed  Google Scholar 

  • Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, Mickey BE, Pan E, Sherry AD, Bachoo RM, Takahashi M (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 111:4542–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaarschmidt BM, Buchbender C, Nensa F, Grueneisen J, Gomez B, Köhler J, Reis H, Ruhlmann V, Umutlu L, Heusch P (2015) Correlation of the apparent diffusion coefficient (ADC) with the standardized uptake value (SUV) in lymph node metastases of non-small cell lung cancer (NSCLC) patients using hybrid 18F-FDG PET/MRI. PLoS One 10:e0116277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C (2016) Thoracic staging with F-FDG PET/MR in non-small cell lung cancer – does it change therapeutic decisions in comparison to F-FDG PET/CT? Eur Radiol. [Epub ahead of print]

    Google Scholar 

  • Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    Article  PubMed  Google Scholar 

  • Schönfeld C, Cebotari S, Voskrebenzev A, Gutberlet M, Hinrichs J, Renne J, Hoeper MM, Olsson KM, Welte T, Wacker F, Vogel-Claussen J (2015) Performance of perfusion-weighted Fourier decomposition MRI for detection of chronic pulmonary emboli. J Magn Reson Imaging 42:72–79

    Article  PubMed  Google Scholar 

  • Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD (2012) Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 67:760–768

    Article  PubMed  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  • Sommer G, Wiese M, Winter L, Lenz C, Klarhöfer M, Forrer F, Lardinois D, Bremerich J (2012) Preoperative staging of non-small-cell lung cancer: comparison of whole-body diffusion-weighted magnetic resonance imaging and 18F–fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol 22:2859–2867

    Article  PubMed  Google Scholar 

  • Sommer G, Bauman G, Koenigkam-Santos M, Draenkow C, Heussel CP, Kauczor HU, Schlemmer HP, Puderbach M (2013) Non-contrast-enhanced preoperative assessment of lung perfusion in patients with non-small-cell lung cancer using Fourier decomposition magnetic resonance imaging. Eur J Radiol 82:e879 e8–87

    Article  PubMed  Google Scholar 

  • Snoussi K, Bulte JW, Guéron M, van Zijl PC (2003) Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 49:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  • Stuber M, Börnert P, Spuentrup E, Botnar RM, Manning WJ (2002) Selective three-dimensional visualization of the coronary arterial lumen using arterial spin tagging. Magn Reson Med 47:322–329

    Article  PubMed  Google Scholar 

  • Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007a) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136

    Article  PubMed  Google Scholar 

  • Sun PZ, Zhou J, Huang J, van Zijl P (2007b) Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 57:405–410

    Article  PubMed  Google Scholar 

  • Takahashi M, Tsutsui H, Murayama C, Miyazawa T, Fritz-Zieroth B (1996) Neurotoxicity of gadolinium contrast agents for magnetic resonance imaging in rats with osmotically disrupted blood-brain barrier. Magn Reson Imaging 14:619–623

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Wehrli FW, Hwang SN, Wehrli SL (2000) Relationship between cancellous bone induced magnetic field and ultrastructure in a rat ovariectomy model. Magn Reson Imaging 18:33–39

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Uematsu H, Hatabu H (2003) MR imaging at high magnetic fields. Eur J Radiol 46:45–52

    Article  PubMed  Google Scholar 

  • Takahashi M, Togao O, Obara M, van Cauteren M, Ohno Y, Doi S, Kuro-o M, Malloy C, Hsia CC, Dimitrov I (2010) Ultra-short echo time (UTE) MR imaging of the lung: comparison between normal and emphysematous lungs in mutant mice. J Magn Reson Imaging 32:326–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Takenaka D, Ohno Y, Matsumoto K, Aoyama N, Onishi Y, Koyama H, Nogami M, Yoshikawa T, Matsumoto S, Sugimura K (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308

    Article  PubMed  Google Scholar 

  • Terreno E, Castelli DD, Aime S (2010a) Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. Contrast Media Mol Imaging 5:78–98

    CAS  PubMed  Google Scholar 

  • Terreno E, Castelli DD, Viale A, Aime S (2010b) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042

    Article  CAS  PubMed  Google Scholar 

  • Togao O, Tsuji R, Ohno Y, Dimitrov I, Takahashi M (2010) Ultrashort echo time (UTE) MRI of the lung: assessment of tissue density in the lung parenchyma. Magn Reson Med 64:1491–1498

    Article  PubMed  Google Scholar 

  • Togao O, Ohno Y, Dimitrov I, Hsia CC, Takahashi M (2011) Ventilation/perfusion imaging of the lung using ultra-short echo time (UTE) MRI in an animal model of pulmonary embolism. J Magn Reson Imaging 34:539–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Togao O, Kessinger CW, Huang G, Soesbe TC, Sagiyama K, Dimitrov I, Sherry AD, Gao J, Takahashi M (2013) Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model. PLoS One 8:e77019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, Suzuki Y, Suzuki SO, Iwaki T, Hata N, Mizoguchi M, Yoshimoto K, Sagiyama K, Takahashi M, Honda H (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448

    Article  CAS  PubMed  Google Scholar 

  • Uematsu H, Dougherty L, Takahashi M, Ohno Y, Nakatsu M, Song HK, Ferrari VA, Gefter WB, Schnall MD, Hatabu H (2001) Pulmonary MR angiography with contrast agent at 4 Tesla: a preliminary result. Magn Reson Med 46:1028–1030

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Takahashi S, Kitajima K, Kimura T, Aoki I, Kawakami F, Miyake H, Ohno Y, Sugimura K (2013) Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 23:3509–3516

    Article  PubMed  Google Scholar 

  • Ueno Y, Takahashi S, Ohno Y, Kitajima K, Yui M, Kassai Y, Kawakami F, Miyake H, Sugimura K (2015) Computed diffusion-weighted MRI for prostate cancer detection: the influence of the combinations of b-values. Br J Radiol 88:20140738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urata J, Miyazaki M, Wada H, Nakaura T, Yamashita Y, Takahashi M (2001) Clinical evaluation of aortic diseases using nonenhanced MRA with ECG-triggered 3D half-Fourier FSE. J Magn Reson Imaging 14:113–119

    Article  CAS  PubMed  Google Scholar 

  • van Zijl PC, Zhou J, Mori N, Payen JF, Wilson D, Mori S (2003) Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 49:440–449

    Article  PubMed  CAS  Google Scholar 

  • van Zijl PC, Jones CK, Ren J, Malloy CR, Sherry AD (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A 104:4359–4364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Elst L, Laurent S, Muller RN (1998) Multinuclear magnetic resonance characterization of paramagnetic contrast agents. The manifold effects of concentration and counterions. Invest Radiol 33:828–834

    Article  CAS  Google Scholar 

  • Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 229:155–172

    Article  CAS  PubMed  Google Scholar 

  • Ward KM, Aletras AH, Balaban RS (2000a) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ward KM, Balaban RS (2000b) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44:799–802

    Article  CAS  PubMed  Google Scholar 

  • Wielopolski PA, Adamis M, Prasad P, Gaa J, Edelman R (1995) Breath-hold 3D STAR MR angiography of the renal arteries using segmented echo planar imaging. Magn Reson Med 33:432–438

    Article  CAS  PubMed  Google Scholar 

  • Yarnykh VL, Terashima M, Hayes CE, Shimakawa A, Takaya N, Nguyen PK, Brittain JH, McConnell MV, Yuan C (2006) Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging 23:691–698

    Article  PubMed  Google Scholar 

  • Yi CA, Shin KM, Lee KS, Kim BT, Kim H, Kwon OJ, Choi JY, Chung MJ (2008) Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology 248:632–642

    Article  PubMed  Google Scholar 

  • Yi CA, Lee KS, Lee HY, Kim S, Kwon OJ, Kim H, Choi JY, Kim BT, Hwang HS, Shim YM (2013) Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial. Cancer 119:1784–1791

    Article  PubMed  Google Scholar 

  • Yuan J, Chen S, King AD, Zhou J, Bhatia KS, Zhang Q, Yeung DK, Wei J, Mok GS, Wang YX (2014) Amide proton transfer-weighted imaging of the head and neck at 3 T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27:1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Zhang YD, Zhu C, Yu TF, Shi HB, Shi ZF, Li H, Wu JF (2016) Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. J Magn Reson Imaging 43:669–679

    Article  PubMed  Google Scholar 

  • Zhang S, Winter P, Wu K, Sherry AD (2001) A novel europium(III)-based MRI contrast agent. J Am Chem Soc 123:1517–1518

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Trokowski R, Sherry AD (2003a) A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc 125:15288–15289

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003b) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36:783–790

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003a) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003b) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126

    Article  PubMed  Google Scholar 

  • Zhou J, van Zijl P (2006) Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc 48:109–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ohno, Y., Takahashi, M., Koyama, H., Yoshikawa, T. (2016). Challenges of Using 3 T MR Systems and Whole-Body MRI for Lung Imaging. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_94

Download citation

  • DOI: https://doi.org/10.1007/174_2016_94

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics