Brain Tumours

  • Joshua D. Palmer
  • Colin Champ
  • Susan C. Short
  • Shannon E. Fogh
Part of the Medical Radiology book series (MEDRAD)


Historically, radiation oncologists have approached re-irradiating brain tumours with caution due to the potential risks of central nervous system late toxicity, especially radionecrosis, which may occur months or years following treatment. There is, however, a paucity of prospective data addressing this approach. Re-irradiation of brain tumours is attracting more interest as our understanding of the tolerance of the brain to radiation evolves. Furthermore, developments in radiation treatment approaches, technology and imaging enable highly accurate targeting of biologically relevant tumour volumes. Thanks to recent advancements in molecular-targeted therapy, further exploration of the role of re-irradiation – primary or in combination with novel agents – is needed.


Ketogenic Diet Stereotactic Radiotherapy Recurrent Glioblastoma Immune Checkpoint Inhibitor Recurrent Glioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Susan C. Short and Jennifer E. Gains authored the brain tumours chapter for the first edition of this textbook. The present chapter is based on their updated manuscript.


  1. Ang K, Jiang GL, Feng Y (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020CrossRefPubMedGoogle Scholar
  2. Arcicasa M, Roncadin M, Bidoli E et al (1999) Re-irradiation and lomustine in patients with relapsed high grade gliomas. Int J Radiat Oncol Biol Phys 43:789–793CrossRefPubMedGoogle Scholar
  3. Armstrong TS, Wefel JS, Wang M et al (2013) Net clinical benefit analysis of radiation therapy oncology group 0525: a phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J Clin Oncol 31:4076–4084CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bobek-Billewicz B, Stasik-Pres G, Majchrzak H (2010) Differentiation between brain tumour recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol 48:81–92PubMedGoogle Scholar
  5. Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461CrossRefPubMedGoogle Scholar
  6. Brem H, Piantadosi S, Burger PC et al (1995) Placebo controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345:1008–1012CrossRefPubMedGoogle Scholar
  7. Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carson K, Grossman S, Fisher J (2007) Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumour therapy CNS consortium phase I and phase II clinical trials. J Clin Oncol 25:2601–2606CrossRefPubMedPubMedCentralGoogle Scholar
  9. Champ CE, Palmer JD, Volek JS et al (2014) Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 117:125–131CrossRefPubMedGoogle Scholar
  10. Chan JL, Lee SW, Fraass BA (2002) Survival and failure patterns of high grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642CrossRefPubMedGoogle Scholar
  11. Chen W (2007) Clinical applications of PET in brain tumours. J Nucl Med 48:1468–1481CrossRefPubMedGoogle Scholar
  12. Cho KH, Hall WA, Gerbi BJ et al (1999) Single dose versus fractionated stereotactic radiotherapy for recurrent gliomas. Int J Radiat Oncol Biol Phys 45:1133–1141CrossRefPubMedGoogle Scholar
  13. Chu HH, Choi SH, Ryoo I et al (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269:831–840CrossRefPubMedGoogle Scholar
  14. Clark GM, McDonald AM, Nabors LB et al (2014) Hypofractionated stereotactic radiosurgery with concurrent bevacizumab for recurrent malignant gliomas: the University of Alabama at Birmingham experience. Neuro Oncol Pract 1:172–177CrossRefGoogle Scholar
  15. Combs SE, Widmer V, Thilman C et al (2005a) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme. Cancer 104:2168–2173CrossRefPubMedGoogle Scholar
  16. Combs SE, Thilmann C, Edler L et al (2005b) Efficacy of fractionated stereotactic re-irradiation in recurrent gliomas: long term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869CrossRefPubMedGoogle Scholar
  17. Combs S, Debus J, Schulz-Ertner D (2007) Radiotherapeutic alternatives for previously irradiated recurrent gliomas. BMC Cancer 7:167CrossRefPubMedPubMedCentralGoogle Scholar
  18. Combs S, Bischof M, Welzel T (2008) Radiochemotherapy with temozolomide as re-irradiation using high precision fractionated stereotactic radiotherapy (FSRT) in patients with recurrent gliomas. J Neurooncol 89:205–210CrossRefPubMedGoogle Scholar
  19. Combs SE, Bruckner T, Mizoe JE et al (2013a) Comparison of carbon ion radiotherapy to photon radiation alone or in combination with temozolomide in patients with high-grade gliomas: explorative hypothesis-generating retrospective analysis. Radiother Oncol 108:132–135CrossRefPubMedGoogle Scholar
  20. Combs SE, Edler L, Rausch R et al (2013b) Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma. Acta Oncol 52:147–152CrossRefPubMedGoogle Scholar
  21. Cuneo KC, Vredenburgh JJ, Sampson JH et al (2012) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82:2018–2024CrossRefPubMedGoogle Scholar
  22. Darakchiev B, Albright R, Breneman J (2008) Safety and efficacy of permanent iodine-125 seed implants and carmustine wafers in patients with recurrent glioblastoma multiforme. J Neurosurg 108:236–242CrossRefPubMedGoogle Scholar
  23. Fabrini MG, Perrone F, De Franco L et al (2009) Perioperative high-dose-rate brachytherapy in the treatment of recurrent malignant gliomas. Strahlenther Onkol 185:524–529 (erratum:703)CrossRefPubMedGoogle Scholar
  24. Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28:3048–3053CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fokas E, Wacker U, Gross MW et al (2009) Hypofractionated stereotactic re-irradiation of recurrent glioblastomas: a beneficial treatment option after high dose radiotherapy. Strahlenther Onkol 185:235–240CrossRefPubMedGoogle Scholar
  26. Gabayan AJ, Green SB, Sanan A et al (2006) Gliasite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery 58:701–709CrossRefPubMedGoogle Scholar
  27. Gaspar LE, Fisher BJ, Macdonald DR et al (1992) Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24:55–57CrossRefPubMedGoogle Scholar
  28. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708CrossRefPubMedPubMedCentralGoogle Scholar
  29. Götz I, Grosu AL (2013) [(18)F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients – a review. Front Oncol 3:104CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grosu A, Weber W, Franz M et al (2005) Re-irradiation of recurrent high grade gliomas using amino acid PET (SPECT)/CT/MRI fusion to determine gross tumour volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519CrossRefPubMedGoogle Scholar
  31. Gutin P, Iwamoto F, Beal K et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75:156–163CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hall EJ, Giaccia AJ (2005) Radiobiology for the radiologist, 6th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  33. Hess CF, Schaaf JC, Kortmann RD et al (1994) Malignant glioma: patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 30:146–149CrossRefPubMedGoogle Scholar
  34. Hudes RS, Corn BW, Werner-Wasik M et al (1999) A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int J Radiat Oncol Biol Phys 43:293–298CrossRefPubMedGoogle Scholar
  35. Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res 18:1303–1311PubMedGoogle Scholar
  36. Kong DS, Lee JI, Park K et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112:2046–2051CrossRefPubMedGoogle Scholar
  37. Koshi K, Yamamoto H, Nakahara A et al (2007) Fractionated stereotactic radiotherapy using gamma unit after hyperbaric oxygenation on recurrent high-grade gliomas. J Neurooncol 82:297–303CrossRefGoogle Scholar
  38. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumour from radiation injury. J Nucl Med 41:1861–1867PubMedGoogle Scholar
  39. Lederman G, Wronski M, Arbit E (2000) Treatment of recurrent glioblastoma multiforme using fractionated stereotactic radiosurgery and concurrent paclitaxel. Am J Clin Oncol 23:155–159CrossRefPubMedGoogle Scholar
  40. Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495CrossRefPubMedPubMedCentralGoogle Scholar
  41. Macdonald D, Cascino T, Schold SJ et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280CrossRefPubMedGoogle Scholar
  42. Martuscello RT, Vedam-Mai V, McCarthy DJ et al. (2015) A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Cancer Res 22:2482–2495Google Scholar
  43. Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360CrossRefPubMedGoogle Scholar
  44. Ngyuen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation — a new cutting edge. Nat Rev Cancer 13:653–662CrossRefGoogle Scholar
  45. Nieder C, Adam M, Molls M et al (2006) Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit Rev Oncol Hematol 60:181–193CrossRefPubMedGoogle Scholar
  46. Nieder C, Astner ST, Mehta MP et al (2008) Improvement, clinical course, and quality of life after palliative radiotherapy for recurrent glioblastoma. Am J Clin Oncol 31:300–305CrossRefPubMedGoogle Scholar
  47. Osman MA (2014) Phase II trial of temozolomide and reirradiation using conformal 3D-radiotherapy in recurrent brain gliomas. Ann Transl Med 2:44PubMedPubMedCentralGoogle Scholar
  48. Palmer JD, Siglin J, Yamoah K et al (2015) Re-resection for recurrent high-grade glioma in the setting of re-irradiation: more is not always better. J Neurooncol 124:215–221CrossRefPubMedGoogle Scholar
  49. Patel M, Siddiqui F, Jin J-Y et al (2009) Salvage re-irradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol 92:185–191CrossRefPubMedGoogle Scholar
  50. Quick-Weller J, Lescher S, Forster MT et al (2016) Combination of 5-ALA and iMRI in re-resection of recurrent glioblastoma. Br J Neurosurg 8:1–5Google Scholar
  51. Rieger J, Bahr O, Maurer GD et al (2014) ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 44:1843–1852CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sampson JH, Vlahovic G, Sahebjam S et al. (2015) Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. J Clin Oncol ASCO Ann Meet Proc 33(3010S)Google Scholar
  53. Scharfen CO, Sneed PK, Wara WM et al (1992) High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 24:583–591CrossRefPubMedGoogle Scholar
  54. Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 17:854–861CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schwer A, Damek D, Kavanagh B et al (2008) A phase I dose escalation study of fractionated stereotactic radiosurgery in combination with gefitinib in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 70:993–1001CrossRefPubMedGoogle Scholar
  56. Shepherd S, Laing R, Cosgrove V et al (1997) Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. Int J Radiat Oncol Biol Phys 37:393–398CrossRefPubMedGoogle Scholar
  57. Shi W, Palmer JD, Werner-Wasik M et al. (2016) Phase I trial of panobinostat and fractionated stereotactic re-irradiation therapy for recurrent high grade gliomas. J Neurooncol 127:535–539Google Scholar
  58. Shrieve DC, Alexander E 3rd, Wen PY et al (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36:275–282CrossRefPubMedGoogle Scholar
  59. Sneed PK, McDermott MW, Gutin PH (1997) Interstitial brachytherapy procedures for brain tumours. Semin Surg Oncol 13:157–166CrossRefPubMedGoogle Scholar
  60. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase II study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMedGoogle Scholar
  61. Stupp R, Hegi ME, Gorlia T et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1199–1208CrossRefGoogle Scholar
  62. Stupp R, Taillibert S, Kanner AA et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. JAMA 314:2535–2543CrossRefPubMedGoogle Scholar
  63. Surapaneni K, Kennedy BC, Yanagihara TK et al (2015) Early cerebral blood volume changes predict progression after convection-enhanced delivery of topotecan for recurrent malignant glioma. World Neurosurg 84:163–172CrossRefPubMedPubMedCentralGoogle Scholar
  64. Taphoorn MJ, Henriksson R, Bottomley A et al (2015) Health-related quality of life in a randomized phase III study of bevacizumab, temozolomide, and radiotherapy in newly diagnosed glioblastoma. J Clin Oncol 33:2166–2175CrossRefPubMedGoogle Scholar
  65. Tofilon P, Fike J (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370CrossRefPubMedGoogle Scholar
  66. Torcuator R, Zuniga R, Mohan YS (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68CrossRefPubMedGoogle Scholar
  67. Tselis N, Kolotas C, Birn G et al (2007) CT guided interstitial HDR brachytherapy for recurrent glioblastoma multiforme. Long term results. Strahlenther Onkol 183:563–570CrossRefPubMedGoogle Scholar
  68. Ullrich RT, Kracht LW, Jacobs AH (2008) Neuroimaging in patients with gliomas. Semin Neurol 28:484–494CrossRefPubMedGoogle Scholar
  69. Weller M, Tabatabai G, Kästner B et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21:2057–2064CrossRefPubMedGoogle Scholar
  70. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMedGoogle Scholar
  71. Westphal M, Lamszus K (2015) Circulating biomarkers for gliomas. Nat Rev Neurol 11:556–566CrossRefPubMedGoogle Scholar
  72. Wick W, Steinbach JP, Kuker WM et al (2004) One week on/one week off: a novel active regime of temozolomide for recurrent glioblastoma. Neurology 62:2113–2115CrossRefPubMedGoogle Scholar
  73. Wick A, Felsberg J, Steinbach JP et al (2007) Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol 25:3357–3361Google Scholar
  74. Withers HR (1985) Biological basis for altered fractionation schemes. Cancer 55:2086–2095CrossRefPubMedGoogle Scholar
  75. Wong CS, van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4:273–284CrossRefPubMedGoogle Scholar
  76. Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled into phase II clinical trials. J Clin Oncol 17:2572–2579CrossRefPubMedGoogle Scholar
  77. Wong E, Huberman M, Lu X-Q (2008) Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 26:5049CrossRefGoogle Scholar
  78. Wong CS, Fehlings MG, Sahgal A (2015) Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 53:574–580CrossRefPubMedGoogle Scholar
  79. Yung WK, Prados MD, Yaya-Tur R et al (1999) Multicentre phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumour Group. J Clin Oncol 17:2762–2771CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joshua D. Palmer
    • 1
  • Colin Champ
    • 2
  • Susan C. Short
    • 3
  • Shannon E. Fogh
    • 4
  1. 1.Department of Radiation OncologyJames Comprehensive Cancer Center, The Ohio State University ColumbusOhioUSA
  2. 2.Department of Radiation OncologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.UCL Cancer InstituteLondonUK
  4. 4.Department of Radiation OncologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations