Reduced Normal Tissue Doses Through Advanced Technology

  • Matthias Guckenberger
  • Reinhart A. Sweeney
  • Cedric Panje
  • Stephanie Tanadini-Lang
Part of the Medical Radiology book series (MEDRAD)


Re-irradiation is probably the most challenging situation in radiotherapy because the radiation tolerance of the normal tissue is significantly reduced compared with the first treatment series. Results with traditional radiotherapy techniques have been disappointing because of the poor conformality of the dose distributions: radiation doses were either insufficiently low resulting in poor rates of tumor control or substantial toxicity was the consequence of high-dose re-irradiation. This chapter will focus on modern techniques of radiation treatment planning and delivery, which make improved sparing of the normal tissue possible. All techniques will be discussed in the context of re-irradiation and theoretical and clinical data supporting the use of these technologies will be presented. Palliative reirradiation to moderate doses might be feasible without using advanced technology. However, under many circumstances 2D or 3D conformal approaches cannot fulfill the required normal tissue constraints. The present chapter discusses the advantages and challenges associated with more complex planning and delivery methods.


Target Volume Planning Target Volume Dose Distribution Clinical Target Volume Gross Tumor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ang KK et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50(4):1013–1020PubMedCrossRefGoogle Scholar
  2. Barker JL Jr et al (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59(4):960–970PubMedCrossRefGoogle Scholar
  3. Biagioli MC et al (2007) Intensity-modulated radiotherapy with concurrent chemotherapy for previously irradiated, recurrent head and neck cancer. Int J Radiat Oncol Biol Phys 69(4):1067–1073PubMedCrossRefGoogle Scholar
  4. Bortfeld T, Webb S (2009) Single-arc IMRT? Phys Med Biol 54(1):N9–N20PubMedCrossRefGoogle Scholar
  5. Brandner ED et al (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65(2):554–560PubMedCrossRefGoogle Scholar
  6. Bzdusek K et al (2009) Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys 36(6):2328–2339PubMedCrossRefGoogle Scholar
  7. Chan C et al (2014) Intensity-modulated radiotherapy for lung cancer: current status and future developments. J Thorac Oncol 9(11):1598–1608PubMedCrossRefGoogle Scholar
  8. Chao KS et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103PubMedCrossRefGoogle Scholar
  9. Chen T et al (2014) Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol 112(3):365–370PubMedCrossRefGoogle Scholar
  10. Combs SE et al (2008) Radiochemotherapy with temozolomide as re-irradiation using high precision fractionated stereotactic radiotherapy (FSRT) in patients with recurrent gliomas. J Neurooncol 89(2):205–210PubMedCrossRefGoogle Scholar
  11. Cuneo KC et al (2012) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82(5):2018–2024PubMedCrossRefGoogle Scholar
  12. Dearnaley DP et al (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353(9149):267–272PubMedCrossRefGoogle Scholar
  13. Deodato F et al (2009) Stereotactic radiotherapy in recurrent gynecological cancer: a case series. Oncol Rep 22(2):415–419PubMedGoogle Scholar
  14. Depuydt T et al (2014) Treating patients with real-time tumor tracking using the Vero gimbaled linac system: implementation and first review. Radiother Oncol 112(3):343–351PubMedCrossRefGoogle Scholar
  15. Dresen RC et al (2010) Absence of tumor invasion into pelvic structures in locally recurrent rectal cancer: prediction with preoperative MR imaging. Radiology 256(1):143–150PubMedCrossRefGoogle Scholar
  16. Duprez F et al (2009) Intensity-modulated radiotherapy for recurrent and second primary head and neck cancer in previously irradiated territory. Radiother Oncol 93(3):563–569PubMedCrossRefGoogle Scholar
  17. Ehrbar S et al (2016) Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments. Z Med Phys 26(1):45–53PubMedCrossRefGoogle Scholar
  18. Engelsman M et al (2005) How much margin reduction is possible through gating or breath hold? Phys Med Biol 50(3):477–490PubMedCrossRefGoogle Scholar
  19. Even-Sapir E et al (2004) Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232(3):815–822PubMedCrossRefGoogle Scholar
  20. Fearon K et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495PubMedCrossRefGoogle Scholar
  21. Fiorino C et al (2008) Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 71(2):611–617PubMedCrossRefGoogle Scholar
  22. Fuss M et al (2004) Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol Cancer Res Treat 3(1):59–67PubMedCrossRefGoogle Scholar
  23. Goitein M (2010) Trials and tribulations in charged particle radiotherapy. Radiother Oncol 95(1):23–31PubMedCrossRefGoogle Scholar
  24. Gollub MJ et al (2013) Prognostic aspects of DCE-MRI in recurrent rectal cancer. Eur Radiol 23(12):3336–3344PubMedCrossRefGoogle Scholar
  25. Grosu AL et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519PubMedCrossRefGoogle Scholar
  26. Guckenberger M et al (2006) Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors. Acta Oncol 45(7):897–906PubMedCrossRefGoogle Scholar
  27. Guckenberger M et al (2007a) Precision required for dose-escalated treatment of spinal metastases and implications for image-guided radiation therapy (IGRT). Radiother Oncol 84(1):56–63PubMedCrossRefGoogle Scholar
  28. Guckenberger M et al (2007b) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69(1):294–301PubMedCrossRefGoogle Scholar
  29. Guckenberger M et al (2009a) Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 93(2):259–265PubMedCrossRefGoogle Scholar
  30. Guckenberger M et al (2009b) Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol 91(3):288–295PubMedCrossRefGoogle Scholar
  31. Guckenberger M et al (2010) Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol 94(1):53–59PubMedCrossRefGoogle Scholar
  32. Guckenberger M et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33PubMedCrossRefGoogle Scholar
  33. Gutin PH et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75(1):156–163PubMedPubMedCentralCrossRefGoogle Scholar
  34. Haertl PM et al (2013) Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution. Radiat Oncol 8:153PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hashimoto T et al (2006) Repeated proton beam therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 65(1):196–202PubMedCrossRefGoogle Scholar
  36. Hatakeyama T et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35(11):2009–2017PubMedCrossRefGoogle Scholar
  37. Heron DE et al (2009) Stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: results of a phase I dose-escalation trial. Int J Radiat Oncol Biol Phys 75(5):1493–1500PubMedCrossRefGoogle Scholar
  38. Hurkmans CW et al (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58(2):105–120PubMedCrossRefGoogle Scholar
  39. ICRU (1993) International commission on radiation units and measurements: prescribing, recording and reporting photon beam therapy, report 50. ICRU, BethesdaGoogle Scholar
  40. ICRU (1999) International commission on radiation units and measurements: prescribing, recording and reporting photon beam therapy, report 62. ICRU, BethesdaGoogle Scholar
  41. Ito K et al (1992) Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 182(2):549–552PubMedCrossRefGoogle Scholar
  42. Jingu K et al (2010) Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP. BMC Cancer 10:127PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jumeau R et al (2015) Optimization of reirradiation using deformable registration. Int J Radiat Oncol Biol Phys 93(3):E599CrossRefGoogle Scholar
  44. Keall PJ et al (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65(5):1579–1584PubMedCrossRefGoogle Scholar
  45. Keall PJ et al (2014) The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys 41(2):020702PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kelly P et al (2010) Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation. Int J Radiat Oncol Biol Phys 78(5):1387–1393PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kilburn JM et al (2014) Thoracic re-irradiation using stereotactic body radiotherapy (SBRT) techniques as first or second course of treatment. Radiother Oncol 110(3):505–510PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kong DS et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051PubMedCrossRefGoogle Scholar
  49. Korreman SS, Juhler-Nottrup T, Boyer AL (2008) Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol 86(1):61–68PubMedCrossRefGoogle Scholar
  50. Kupelian PA et al (2005) Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys 63(4):1024–1028PubMedCrossRefGoogle Scholar
  51. Lang S et al (2014) Development and evaluation of a prototype tracking system using the treatment couch. Med Phys 41(2):021720PubMedCrossRefGoogle Scholar
  52. Lax I et al (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33(6):677–683PubMedCrossRefGoogle Scholar
  53. Lebesque JV, Keus RB (1991) The simultaneous boost technique: the concept of relative normalized total dose. Radiother Oncol 22(1):45–55PubMedCrossRefGoogle Scholar
  54. Lee JK et al (1981) CT appearance of the pelvis after abdomino-perineal resection for rectal carcinoma. Radiology 141(3):737–741PubMedCrossRefGoogle Scholar
  55. Lee N et al (2007) Salvage re-irradiation for recurrent head and neck cancer. Int J Radiat Oncol Biol Phys 68(3):731–740PubMedCrossRefGoogle Scholar
  56. Lee IH et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73(2):479–485PubMedCrossRefGoogle Scholar
  57. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102(4):316–319PubMedGoogle Scholar
  58. Leksell L (1968) Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand 134(8):585–595PubMedGoogle Scholar
  59. Liang J et al (2015) Trajectory modulated arc therapy: a fully dynamic delivery with synchronized couch and gantry motion significantly improves dosimetric indices correlated with poor cosmesis in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 92(5):1148–1156PubMedCrossRefGoogle Scholar
  60. Lin R et al (1999) Nasopharyngeal carcinoma: repeat treatment with conformal proton therapy – dose-volume histogram analysis. Radiology 213(2):489–494PubMedCrossRefGoogle Scholar
  61. Loeffler JS et al (1990) The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol 8(4):576–582PubMedCrossRefGoogle Scholar
  62. Maciejewski B, Taylor JM, Withers HR (1986) Alpha/beta value and the importance of size of dose per fraction for late complications in the supraglottic larynx. Radiother Oncol 7(4):323–326PubMedCrossRefGoogle Scholar
  63. Mackie TR et al (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709–1719PubMedCrossRefGoogle Scholar
  64. Mahan SL et al (2005) Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis. Int J Radiat Oncol Biol Phys 63(5):1576–1583PubMedCrossRefGoogle Scholar
  65. Mantel F, Flentje M, Guckenberger M (2013) Stereotactic body radiation therapy in the re-irradiation situation – a review. Radiat Oncol 8:7PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3 Suppl):S1–S2PubMedCrossRefGoogle Scholar
  67. Marnitz S et al (2015) Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation – an intraindividual comparison. Radiat Oncol 10:91PubMedPubMedCentralCrossRefGoogle Scholar
  68. Marucci L et al (2006) Conservation treatment of the eye: conformal proton reirradiation for recurrent uveal melanoma. Int J Radiat Oncol Biol Phys 64(4):1018–1022PubMedCrossRefGoogle Scholar
  69. Mayr NA et al (2006) Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol 187(1):65–72PubMedCrossRefGoogle Scholar
  70. Meerwein CM et al (2015) Post-treatment surveillance of head and neck cancer: pitfalls in the interpretation of FDG PET-CT/MRI. Swiss Med Wkly 145:w14116PubMedGoogle Scholar
  71. Milker-Zabel S et al (2003) Clinical results of retreatment of vertebral bone metastases by stereotactic conformal radiotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 55(1):162–167PubMedCrossRefGoogle Scholar
  72. Minniti G et al (2016) Repeated stereotactic radiosurgery for patients with progressive brain metastases. J Neurooncol 126(1):91–97PubMedCrossRefGoogle Scholar
  73. Munck Af Rosenschold P et al (2015) Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 17(5):757–763PubMedCrossRefGoogle Scholar
  74. Nakamura K et al (2014) Recent advances in radiation oncology: intensity-modulated radiotherapy, a clinical perspective. Int J Clin Oncol 19(4):564–569PubMedCrossRefGoogle Scholar
  75. Nieder C et al (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66(5):1446–1449PubMedCrossRefGoogle Scholar
  76. Niyazi M et al (2012) Re-irradiation in recurrent malignant glioma: prognostic value of [18F]FET-PET. J Neurooncol 110(3):389–395PubMedCrossRefGoogle Scholar
  77. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317PubMedCrossRefGoogle Scholar
  78. Palmer J et al (2014) Motion of the esophagus due to cardiac motion. PLoS One 9(2):e89126PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pauleit D et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687PubMedCrossRefGoogle Scholar
  80. Plastaras JP, Berman AT, Freedman GM (2014) Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer. Semin Oncol 41(6):807–819PubMedCrossRefGoogle Scholar
  81. Polat B et al (2008) Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 184(12):668–673PubMedCrossRefGoogle Scholar
  82. Poltinnikov IM et al (2005) Combination of longitudinal and circumferential three-dimensional esophageal dose distribution predicts acute esophagitis in hypofractionated reirradiation of patients with non-small-cell lung cancer treated in stereotactic body frame. Int J Radiat Oncol Biol Phys 62(3):652–658PubMedCrossRefGoogle Scholar
  83. Popovtzer A et al (2009) The pattern of failure after reirradiation of recurrent squamous cell head and neck cancer: implications for defining the targets. Int J Radiat Oncol Biol Phys 74(5):1342–1347PubMedPubMedCentralCrossRefGoogle Scholar
  84. Purdie TG et al (2007) Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys 68(1):243–252PubMedCrossRefGoogle Scholar
  85. Ramakrishna N et al (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95(1):109–115PubMedCrossRefGoogle Scholar
  86. Rieken S et al (2013) Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 109(3):487–492PubMedCrossRefGoogle Scholar
  87. Rwigema JC et al (2010) Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: updated report of the University of Pittsburgh experience. Am J Clin Oncol 33(3):286–93PubMedGoogle Scholar
  88. Schwer AL et al (2008) A phase I dose-escalation study of fractionated stereotactic radiosurgery in combination with gefitinib in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 70(4):993–1001PubMedCrossRefGoogle Scholar
  89. Seppenwoolde Y et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834PubMedCrossRefGoogle Scholar
  90. Seppenwoolde Y et al (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774–2784PubMedCrossRefGoogle Scholar
  91. Shepherd SF et al (1997) Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. Int J Radiat Oncol Biol Phys 37(2):393–398PubMedCrossRefGoogle Scholar
  92. Smitsmans MH et al (2008) The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 71(4):1279–1286PubMedCrossRefGoogle Scholar
  93. Smyth G et al (2013) Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy. Phys Med Biol 58(22):8163–8177PubMedCrossRefGoogle Scholar
  94. Sohn M, Weinmann M, Alber M (2009) Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model. Int J Radiat Oncol Biol Phys 75(3):906–914PubMedCrossRefGoogle Scholar
  95. Sonke JJ et al (2005) Respiratory correlated cone beam CT. Med Phys 32(4):1176–1186PubMedCrossRefGoogle Scholar
  96. Sonke JJ et al (2009) Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys 74(2):567–574PubMedCrossRefGoogle Scholar
  97. Sterzing F et al (2010) Spinal cord sparing reirradiation with helical tomotherapy. Cancer 116(16):3961–3968PubMedCrossRefGoogle Scholar
  98. Stieler F et al (2011) Reirradiation of spinal column metastases: comparison of several treatment techniques and dosimetric validation for the use of VMAT. Strahlenther Onkol 187(7):406–415PubMedCrossRefGoogle Scholar
  99. Sykes JR et al (2005) A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging. Radiother Oncol 77(1):45–52PubMedCrossRefGoogle Scholar
  100. Teoh M et al (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 84(1007):967–996PubMedPubMedCentralCrossRefGoogle Scholar
  101. Terakawa Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699PubMedCrossRefGoogle Scholar
  102. Underberg RW et al (2005) Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys 62(2):554–560PubMedCrossRefGoogle Scholar
  103. van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14(1):52–64PubMedCrossRefGoogle Scholar
  104. van Rijssel MJ et al (2014) A critical approach to the clinical use of deformable image registration software. In response to Meijneke et al. Radiother Oncol 112(3):447–448PubMedCrossRefGoogle Scholar
  105. Verellen D et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7(12):949–960PubMedCrossRefGoogle Scholar
  106. Vestergaard A et al (2013) Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer: a dose accumulation comparison. Radiother Oncol 109(3):457–462PubMedCrossRefGoogle Scholar
  107. Wachter S et al (2002) The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 52(1):91–100PubMedCrossRefGoogle Scholar
  108. Wilbert J et al (2008) Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Med Phys 35(19):3911–9921CrossRefGoogle Scholar
  109. Wolthaus JW et al (2008) Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys 70(4):1229–1238PubMedCrossRefGoogle Scholar
  110. Yan D et al (1997) Adaptive radiation therapy. Phys Med Biol 42(1):123–132PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthias Guckenberger
    • 1
  • Reinhart A. Sweeney
    • 2
  • Cedric Panje
    • 1
  • Stephanie Tanadini-Lang
    • 1
  1. 1.Department of Radiation OncologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Department of Radiation OncologyLeopoldina Hospital SchweinfurtSchweinfurtGermany

Personalised recommendations