Radiation treatment to the brain is part of focal and systemic treatment concepts and can be applied in fractionated doses or a single dose. As there is always normal neuronal tissue affected, short- and long-term tissue changes are seen, including radiation necrosis, gliotic changes, and volume loss up to atrophy with a large variety of clinical symptomatology.

Some of the described changes are influenced by concomitant treatments like chemo- or immune-modulating therapies.

This chapter describes the typical imaging changes of normal and pathologic tissue after radiation treatment and how to differentiate treatment-related and disease-related changes based on functional imaging methods.


Apparent Diffusion Coefficient Diffusion Tensor Imaging Clinical Target Volume Radiation Necrosis Recurrent Glioblastoma 



Apparent diffusion coefficient


Arterial spin labeling






Chemical shift imaging/spectroscopic imaging


Computed tomography


Dynamic contrast enhanced


Delayed radiation necrosis


Dynamic susceptibility contrast


Diffusion tensor imaging


Diffusion-weighted imaging


Fractional anisotropy




Magnetic resonance imaging


Magnetic resonance spectroscopy




Normalized maximum slope of enhancement in initial vascular phase


Positron emission tomography






Response Assessment in Neuro-Oncology


Regional cerebral blood volume


  1. Alger JR, Frank JA, Bizzi A et al (1990) Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 177:633–641CrossRefPubMedGoogle Scholar
  2. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63:335–350CrossRefPubMedGoogle Scholar
  3. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMedGoogle Scholar
  4. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372CrossRefPubMedGoogle Scholar
  5. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bisdas S, Naegele T, Ritz R et al (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18:575–583CrossRefPubMedGoogle Scholar
  7. Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197CrossRefPubMedGoogle Scholar
  8. Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638CrossRefPubMedGoogle Scholar
  9. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461CrossRefPubMedGoogle Scholar
  10. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628CrossRefPubMedGoogle Scholar
  11. Caseiras GB, Chheang S, Babb J et al (2010) Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 73:215–220CrossRefPubMedGoogle Scholar
  12. Ceyssebs S, Van Laere K, de Groot T et al (2006) 11C-Methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437Google Scholar
  13. Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29CrossRefPubMedGoogle Scholar
  14. Cha S, Lupo JM, Chen MH et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28:1078–1084CrossRefPubMedGoogle Scholar
  15. Chamberlain MC (2008) Pseudoprogression in Glioblastoma. J Clin Oncol 10:43–59Google Scholar
  16. Chaskis C, Neyns B, Michotte A, De RM, Everaert H (2009) Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. Surg Neurol 72:423–428CrossRefPubMedGoogle Scholar
  17. Clarke JL, Chang S (2009) Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 9:241–246CrossRefPubMedGoogle Scholar
  18. Delorme S, Weber MA (2006) Applications of MRS in the evaluation of focal malignant brain lesions. Cancer Imaging 6:95–99PubMedCentralCrossRefPubMedGoogle Scholar
  19. Demaerel P, Johannik K, van Hecke P et al (1991) Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15:67–76CrossRefPubMedGoogle Scholar
  20. Deviers A, Ken S, Fillerton T et al (2014) Evaluation of the lactate-n-acetyl aspartate ration defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patient with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 90:385–393CrossRefPubMedGoogle Scholar
  21. Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMedGoogle Scholar
  22. Essig M, Anzalone N, Combs SE et al (2011) MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. AJNR Am J Neuroradiol 33:803–817CrossRefPubMedGoogle Scholar
  23. Essig M, Shiroishi MS, Nguyen TB et al (2013a) Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 200:24–34CrossRefGoogle Scholar
  24. Essig M, Nguyen TB, Shiroishi MS et al (2013b) Perfusion MRI: the five most asked clinical questions. Am J Roentgenol 201:495–510CrossRefGoogle Scholar
  25. Fink JR, Carr RB, Matsusue E et al (2012) Comparison of 3 T proton MR spectroscopy, MR perfusion and MR diffusion for distinguishing glioma recurrence from posttreatment effects. J Magn Reson Imaging 35:56–63CrossRefPubMedGoogle Scholar
  26. Finn MA, Blumenthal DT, Salzman KL, Jensen RL (2007) Transient postictal MRI changes in patients with brain tumors may mimic disease progression. Surg Neurol 67:246–250CrossRefPubMedGoogle Scholar
  27. Gahramanov S, Raslan AM, Muldoon LL et al (2011) Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys 79:514–523PubMedCentralCrossRefPubMedGoogle Scholar
  28. Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454CrossRefPubMedGoogle Scholar
  29. Geer CP, Simonds J, Anvery A et al (2012) Does MR perfusion imaging impact management decisions for patients with brain tumors? A prospective study. AJNR Am J Neuroradiol 33:556–562CrossRefPubMedGoogle Scholar
  30. Gerstner ER, Duda DG, di Tomaso E et al (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236CrossRefPubMedGoogle Scholar
  31. Green-Schloesser D, Robbins ME (2012) Radiation induced cognitive impairment – from bench to bedside. Neurol Oncol 14:S37–S44Google Scholar
  32. Hazle JD, Jackson EF, Schomer DF, Leeds NE (1997) Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging 7:1084–1093CrossRefPubMedGoogle Scholar
  33. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558CrossRefPubMedGoogle Scholar
  34. Kickingereder P, Dorn F, Blau T, Schmidt M, Kocher M, Galldiks N, Ruge MI (2013) Differentiation of local tumor recurrence from radiation induced changes after stereotactic radiosurgery of brain metastasis: case report and review of the literature. Radiat Oncol 8:52–59PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kim YH, Oh SW, Lim YJ et al (2010) Differentiating radiation necrosis from tumor recurrence in high grade gliomas: assessing the efficacy of 18F-FDG, 11C-methionie PET and perfusion MRI. Clin Neurol Neurosurg 112:758–765CrossRefPubMedGoogle Scholar
  36. Kingsley DP, Kendall BE (1981) CT of adverse effects of therapeutic radiation of the central nervous system. Am J Neuroradiol 2:453–460PubMedGoogle Scholar
  37. Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798CrossRefPubMedGoogle Scholar
  38. Kong DS, Kim ST, Kim EH et al (2011) Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 32:382–387CrossRefPubMedGoogle Scholar
  39. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar
  40. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217(2):377–384CrossRefPubMedGoogle Scholar
  41. Kunert P, Matzia E, Prokopienko M, Marchel A (2012) Radiation-induced tumours of meninges. Report on eight cases and review of the literature. Neurol Neurochir Pol 46:542–552PubMedGoogle Scholar
  42. Lacerda S, Law M (2009) Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimag Clin N Am 19:527–557CrossRefGoogle Scholar
  43. Law M (2004) MR spectroscopy of brain tumors. Top Magn Reson Imaging 15:291–313CrossRefPubMedGoogle Scholar
  44. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMedGoogle Scholar
  45. Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498PubMedCentralCrossRefPubMedGoogle Scholar
  46. Lu S, Ahm D, Johnson G, Law M, Zagzag D, Grossman RI (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232(1):221–228CrossRefPubMedGoogle Scholar
  47. Lv XF, Zheng XL, Zhang WD, Liu LZ, Zhang YM, Chen MZ, Li L (2014) Radiation-induced changes in normal appearing gray matter in patients with nasopharyngeal carcinomas. A magnetic resonance imaging voxel-based morphometry study. Neuroradiology 56:423–430CrossRefPubMedGoogle Scholar
  48. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  49. Madden JR, Addo-Yobo SO, Donson AM et al (2010) Radiation induced glioblastoma multiforme in children treated for medulloblastoma with characteristics of both medulloblastoma and glioblastoma multiforme. J Pediatr Hematol Oncol 32:272–278CrossRefGoogle Scholar
  50. Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584CrossRefPubMedGoogle Scholar
  51. Mansouri, A, Badhiwala J, Mansouri S, Zadeh G (2014) The evolving role of radiosurgery in the management of radiation induced meningiomas: a review of current advances and future directions. Biomed Res Int. 2014:107526. doi:  10.1155/2014/107526
  52. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR (2010) Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 52:297–306CrossRefPubMedGoogle Scholar
  53. Meler J, Sahlmann CO, Scheel AK (2007) 18F-FDG PET and PET-CT in fever of unknown origin. J Nucl Med 48:35–45Google Scholar
  54. Meyerand ME, Pipes JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 20:117–123PubMedGoogle Scholar
  55. Miyashita M, Miyatake S, Imahori Y et al (2008) Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol 89:239–246CrossRefPubMedGoogle Scholar
  56. Mullins ME, Barest GD, Schaefer PW et al (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26(8):1967–1972PubMedGoogle Scholar
  57. Mussurakis S, Gibbs P, Horsman A (1998) Primary breast abnormalities: selective pixel sampling on dynamic gadolinium-enhanced MR images. Radiology 206:465–473CrossRefPubMedGoogle Scholar
  58. Narang J, Jain R, Arbab AS et al (2011) Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro Oncol 13:1037–1046PubMedCentralCrossRefPubMedGoogle Scholar
  59. Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–458CrossRefPubMedGoogle Scholar
  60. Nguyen TB, Cron GO, Mercier JF et al (2012) Diagnostic accuracy of dynamic contrast-enhanced MR imaging using a phase-derived vascular input function in the preoperative grading of gliomas. AJNR Am J Neuroradiol 33(8):1539–1545CrossRefPubMedGoogle Scholar
  61. Ozsunar Y, Mullins ME, Kwong K et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of ASL, DSC MRI and FDG-PET. Acad Radiol 17:282–290CrossRefPubMedGoogle Scholar
  62. Patel TR, McHugh BJ, Bi WL, Minhja FJ, Knisely JP, Chiang VL (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol 32:1885–1892CrossRefPubMedGoogle Scholar
  63. Prat R, Galeano I, Lucas A et al (2010) Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion and 2-18FDGfor detection of recurrence or grade increase in gliomas. J Clin Neurosci 17:50–53CrossRefPubMedGoogle Scholar
  64. Price SJ, Jena R, Burnet NG, Carpenter TA, Pickard JD, Gillard JH (2007) Predicting patterns of glioma recurrence using diffusion tensor imaging. Eur Radiol 17:1675–1684CrossRefPubMedGoogle Scholar
  65. Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239(3):632–649CrossRefPubMedGoogle Scholar
  66. Rane N, Quaghebeur G (2012) CNS effects following the treatment of malignancy. Clin Radiol 67:61–68CrossRefPubMedGoogle Scholar
  67. Reddy K, Westerly D, Chen C (2013) MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high grade gliomas. J Med Imaging Radiat Oncol 57:349–355CrossRefPubMedGoogle Scholar
  68. Sorensen AG, Batchelor TT, Zhang WT et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300PubMedCentralCrossRefPubMedGoogle Scholar
  69. Stadnik TW, Demaerel P, Luypaert RR et al (2003) Imaging tutorial: differential diagnosis of bright lesion on diffusion-weighted MR images. Radiographics 23(1):e7CrossRefPubMedGoogle Scholar
  70. Stieltjes B, Schluter M, Didinger B, Weber MA, Hahn HK, Parzer P, Rexilius J, Konrad-Verse O, Peitgen HO, Essig M (2006) Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model. Neuroimage 31(2):531–542CrossRefPubMedGoogle Scholar
  71. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60CrossRefPubMedGoogle Scholar
  72. Szerlip N, Rutter C, Ram N et al (2011) Factors impacting volumetric white matter changes following whole brain radiation therapy. J Neurooncol 103:111–119CrossRefPubMedGoogle Scholar
  73. Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367CrossRefPubMedGoogle Scholar
  74. Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery – in malignant glioma. Ann Nucl Med 18:291–296CrossRefPubMedGoogle Scholar
  75. Van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neurooncology (a report of the RANO group): assessment of outcome in trial of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefPubMedGoogle Scholar
  76. Vuori K, Kankaanranta L, Hakkinen AM et al (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230:703–708CrossRefPubMedGoogle Scholar
  77. Wiggenraad R, Verbeek-de Kanter A, Kal HB et al (2011) Dose effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol 98:292–297CrossRefPubMedGoogle Scholar
  78. Wilson M, Cummins CL, Macpherson L et al (2013) Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours. Eur J Cancer 13:457–464CrossRefGoogle Scholar
  79. Young RJ, Gupta A, Shah AD et al (2011) Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 76:1918–1924PubMedCentralCrossRefPubMedGoogle Scholar
  80. Yu JB, Schulder M, Knisely J (2012) Radiosurgical dose selection for brain metastases. Prog Neurol Surg 25:139–147CrossRefPubMedGoogle Scholar
  81. Zelhof B, Lowry M, Rodrigues G, Kraus S, Turnbull L (2009) Description of magnetic resonance imaging-derived enhancement variables in pathologically confirmed prostate cancer and normal peripheral zone regions. BJU Int 104:621–627CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations