Future Methods in Tumor Imaging

Part of the Medical Radiology book series (MEDRAD)


Chapter  Advanced MR Methods in Differential Diagnosis of Brain Tumors deals with advanced and future MR imaging methods in brain tumors. In this chapter, we will discuss future MR spectroscopic methods that are promising regarding the tumor diagnosis and the research of tumor biology. Whereas Chap.  MR Spectroscopic Imaging focuses on diagnostic significance of 1H and 31P MRS, we herein put more emphasis on methodical issues of MRS. First, we deal with special editing methods to detect special “tumor” metabolites (glycine, 2-hydroxyglutarate). In the second part, we discuss methods and biological implications of x-nucleus spectroscopy, focusing on the nuclei 31P and 13C. Here, we point out that a considerable proportion of advanced spectroscopic studies dealing with brain tumors come from animal studies.


Dynamic Nuclear Polarization Glutamate Label MRSI Data Lower Gyromagnetic Ratio Lactate Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Adenosine triphosphate












Inorganic phosphate

TCA cycle

Tricarboxylic acid cycle or Krebs cycle


Total choline


Total creatine


Total N-acetylaspartate


  1. Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen Y-F, Nelson SJ, Vigneron DB, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, Vander Heiden MG, Sorensen AG (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4PubMedCrossRefPubMedCentralGoogle Scholar
  3. Andronesi OC, Rapalino O, Gerstner E, Chi A, Batchelor TT, Cahill DP, Sorensen AG, Rosen BR (2013) Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 123:3659–3663PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163PubMedCrossRefPubMedCentralGoogle Scholar
  5. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519PubMedCrossRefGoogle Scholar
  6. Choi C, Ganji SK, DeBerardinis RJ, Dimitrov IE, Pascual JM, Bachoo R, Mickey BE, Malloy CR, Maher EA (2011) Measurement of glycine in the human brain in vivo by 1H-MRS at 3T: application in brain tumors. Magn Reson Med 66:609–618PubMedCrossRefPubMedCentralGoogle Scholar
  7. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, Yang X-L, Mashimo T, Raisanen JM, Marin-Valencia I, Pascual JM, Madden CJ, Mickey BE, Malloy CR, Bachoo RM, Maher EA (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629PubMedCrossRefPubMedCentralGoogle Scholar
  8. Davies NP, Wilson M, Natarajan K, Sun Y, MacPherson L, Brundler M-A, Arvanitis TN, Grundy RG, Peet AC (2010) Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 1.5 tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed 23:80–87PubMedCrossRefGoogle Scholar
  9. Day SE, Kettunen MI, Gallagher FA, Hu D-E, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMedCrossRefGoogle Scholar
  10. de Graaf R, Mason G, Patel A, Behar K, Rothman D (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16:339–357PubMedCrossRefGoogle Scholar
  11. Esmaeili M, Hamans BC, Navis AC, van Horssen R, Bathen TF, Gribbestad IS, Leenders WP, Heerschap A (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res 74:4898–4907PubMedCrossRefGoogle Scholar
  12. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM (2008a) 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med 60:253–257PubMedCrossRefGoogle Scholar
  13. Gallagher FA, Kettunen MI, Day SE, Hu D-E, Ardenkjaer-Larsen JH, Zandt RI, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008b) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMedCrossRefGoogle Scholar
  14. Gallagher FA, Kettunen MI, Day SE, Hu D, Karlsson M, Gisselsson A, Lerche MH, Brindle KM (2011a) Detection of tumor glutamate metabolism in vivo using (13)C magnetic resonance spectroscopy and hyperpolarized [1-(13)C]glutamate. Magn Reson Med 66:18–23PubMedCrossRefGoogle Scholar
  15. Gallagher FA, Kettunen MI, Brindle KM (2011b) Imaging pH with hyperpolarized 13C. NMR Biomed 24:1006–1015PubMedCrossRefGoogle Scholar
  16. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A 100:10435–10439PubMedCrossRefPubMedCentralGoogle Scholar
  17. Golman K, Zandt RI, Lerche M, Pehrson R, Ardenkjaer-Larsen JH (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860PubMedCrossRefGoogle Scholar
  18. Govindaraju V, Basus V, Matson G, Maudsley A (1998) Measurement of chemical shifts and coupling constants for glutamate and glutamine. Magn Reson Med 39:1011–1013PubMedCrossRefGoogle Scholar
  19. Hattingen E, Lanfermann H, Quick J, Franz K, Zanella FE, Pilatus U (2009) (1)H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 22:33–41PubMedCrossRefGoogle Scholar
  20. Hattingen E, Jurcoane A, Bähr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U (2011) Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol 13(12):1349–1363PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hattingen E, Bähr O, Rieger J, Blasel S, Steinbach J, Pilatus U (2013) Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 8:e56439PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) P-31 MR spectroscopy of normal human brain and brain tumors. Radiology 174:401–409PubMedCrossRefGoogle Scholar
  23. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, Mathews D, Pascual JM, Mickey BE, Malloy CR, DeBerardinis RJ (2012) Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244PubMedCrossRefPubMedCentralGoogle Scholar
  24. Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15:18–27PubMedCrossRefGoogle Scholar
  25. Maudsley AA, Gupta RK, Stoyanova R, Parra NA, Roy B, Sheriff S, Hussain N, Behari S (2014) Mapping of glycine distributions in gliomas. AJNR Am J Neuroradiol 35(6 Suppl):S31–S36PubMedCrossRefGoogle Scholar
  26. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324PubMedCrossRefGoogle Scholar
  27. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen L-I, Robb FJ, Tropp J, Murray JA (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108PubMedCrossRefPubMedCentralGoogle Scholar
  28. Park I, Larson PEZ, Zierhut ML, Hu S, Bok R, Ozawa T, Kurhanewicz J, Vigneron DB, Vandenberg SR, James CD, Nelson SJ (2010) Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 12:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  29. Park JM, Josan S, Jang T, Merchant M, Yen Y-F, Hurd RE, Recht L, Spielman DM, Mayer D (2012) Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13) C]pyruvate. Magn Reson Med 68(6):1886–1893PubMedCrossRefPubMedCentralGoogle Scholar
  30. Park JM, Recht LD, Josan S, Merchant M, Jang T, Yen Y-F, Hurd RE, Spielman DM, Mayer D (2013) Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized (13)C magnetic resonance spectroscopic imaging. Neuro Oncol 15:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  31. Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, Salamon N, Chou AP, Yong WH, Soto H, Wilson N, Driggers E, Jang HG, Su SM, Schenkein DP, Lai A, Cloughesy TF, Kornblum HI, Wu H, Fantin VR, Liau LM (2012) Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107:197–205PubMedCrossRefPubMedCentralGoogle Scholar
  32. Prichard JW, Alger JR, Behar KL, Petroff OA, Shulman RG (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc Natl Acad Sci U S A 80:2748–2751PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369Google Scholar
  34. Rutter A, Hugenholtz H, Saunders JK, Smith IC (1995) One-dimensional phosphorus-31 chemical shift imaging of human brain tumors. Invest Radiol 30:359–366PubMedCrossRefGoogle Scholar
  35. Stubbs M, Bhujwalla ZM, Tozer GM, Rodrigues LM, Maxwell RJ, Morgan R, Howe FA, Griffiths JR (1992) An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed 5:351–359PubMedCrossRefGoogle Scholar
  36. Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong KS, Veech RL, Griffiths JR (1994) Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res 54:4011–4016PubMedGoogle Scholar
  37. Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  38. Wijnen JP, Van der Graaf M, Scheenen TWJ, Klomp DWJ, de Galan BE, Idema AJS, Heerschap A (2010) In vivo 13C magnetic resonance spectroscopy of a human brain tumor after application of 13C-1-enriched glucose. Magn Reson Imaging 28:690–697PubMedCrossRefGoogle Scholar
  39. Wilson DM, Kurhanewicz J (2014) Hyperpolarized 13C MR for molecular imaging of prostate cancer. J Nucl Med 55:1567–1572PubMedCrossRefPubMedCentralGoogle Scholar
  40. Witney TH, Kettunen MI, Hu DE, Gallagher FA, Bohndiek SE, Napolitano R, Brindle KM (2010) Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br J Cancer 103:1400–1406PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
  2. 2.NeuroradiologyClinic of Rheinische Friedrich-Wilhelms-UniversityBonnGermany

Personalised recommendations